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♁ Significant variations of atmospheric parameters (temperature, pressure
and water vapor) along Colombian mountainous areas

X Degradation of Tropospheric Refraction into heights obtained by GNSS

\ Goal: Approximation to calculation of Zenith Tropospheric Delay (ZTD)
based on GNSS
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[ With respect to microwaves tropospheric delay is not frequency-dependent

' The magnitude of the tropospheric delay is the same for both L1 and L2
observations, and for pseudo-range and carrier phase measurements

Z There is significantly less tropospheric delay at high altitude than at sea
level

♀ The tropospheric delay can be predicted using values of temperature,
pressure, and humidity, input into one of a number of atmospheric
refraction models

Y For surveys of less than a few tens of kilometers in extent, the
tropospheric delay will tend to be the same at both ends of a baseline

♂ Neglecting to apply tropospheric refraction results in an absolute scale
error (absolute troposphere biases) and wrong station heights (relative
troposphere biases)
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♂ The tropospheric delay is written as the product of the delay in zenith
direction and a mapping function

∆̺ = f (z) ∆̺
0
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Y First order mapping function

fd(z) ≃ fw (z) ≃ f (z) ≃
1
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Z Saastamoinen Model
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IGAC Approach

♁ ZWD and ZTD were determined at local stations

' Software used: Bernese

♀ Network configuration:

1. MAGNA-ECO Stations (25)
2. Homogeneus distribution along Colombian mountains
3. Sampling interval: 1 sec
4. Cut-off angle: 3 degrees

♂ ZWD and ZTD were calculated from GNSS Slant Total Delay with Niell
mapping functions

X ZWD and ZTD were calculated each 2 hours

Z Data were taken from GPS week 1520 (23.02.2009 - 01.03.2009)
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Results: Wet Component Time Series
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Conclusions and Future Activities

♁ Wet correction, < 0,3m, and dry correction, approx 2m

♀ Highly variability (up to 0.5m) in space and time

♂ Accuracy of ZTD is better than 1cm (a few milimeters)

Z The incorporation of the model allowed an improvement in the height
component (up to 10 cm for baselines within 20 km)

\ Total monitoring (7/24) of local troposphere

[ Improving densification of MAGNA-ECO

' Incorporate metereological Data
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