The progress of the geoid in south America under GRACE and EGM08 models

D. Blitzkow
(E-mail: dblitzko@usp.br)

A. C. O. C. Matos
Polytechnic School of the University of São Paulo, São Paulo, Brazil

M. C. B. Lobianco
Geodesy Coordination – Brazilian Institute of Geography and Statistics (IBGE)

I. O. Campos
Faculty of Civil Engineering – Federal University of Uberlândia

IAG 2009 Buenos Aires, Argentina 31 August – 04 September 2009
This presentation shows the particular efforts for the establishment:
Geoid (quasi-geoid) model in South America

Limited by 15º N and 57º S in latitude
95º W and 30º W in longitude

The software package SHGEO developed by the University of New Brunswick-Canada Ellmann, 2005a;2005b) was used for the partial calculation combined with modified Stokes integral proposed by Featherstone et al. (1998) using FFT

The Stokes-Helmert scheme for geoid determination is:

- Formulation of the boundary value problem on the Earth's surface;
- Evaluation of the Helmert gravity anomalies on the Earth's surface;
- Modified Stokes´s integration (solution to the Stokes´s boundary value problem);
- Computing the quasi-geoid
DIGITAL TERRAIN MODEL

SAM3s_v2 with a grid size of 3” x 3” (~90m x 90m) was used. This model consists of SRTM3 (Farr et al., 2007), but EGM96 (Lemoine et al., 1998) geoidal heights used in the SRTM3 was substituted by EIGEN-GL04C (Fürste et al., 2006); in order to derive the orthometric height.. The gaps were filled by digitising maps and DTM2002 (Saleh and Pavlis, 2002, Blitzkow et al., 2007). The SHGEO package also needs:
- Mean heights with resolution of 30” x 30”, 5’ x 5’. These models were derived from direct averaging of SAM3s_v1.
- Global mean height 60’ x 60’: derived from ETOPO5 (1988).
GRAVITY DATA

Many activities going on by different organizations, universities and research institutes.

It is important to mention:
● IBGE
● NGA
● GETECH
● the many civil and military institutions in several countries of South America.

Due to the big efforts undertaken by the different organizations in the last few years to improve the gravity data coverage all over the countries there are available at the moment approximately 924,600 point gravity data in the continent, including Central America.
ADDING BOUGUER CORRECTION AS A FUNCTION OF THE HEIGHT FROM GRAVITY DATABASE AND TERRAIN CORRECTION (SPHERICAL APPROXIMATION)

Derived according to:
FREE AIR GRAVITY ANOMALY AT MEASUREMENT POINTS

Mean = -51.78 mGal
STD = 82.47 mGal
Max. = 195.30 mGal
Min. = -455.31 mGal
FREE-AIR ANOMALIES (FA)
Mean free-air gravity anomalies in a 5’ grid were derived from point gravity data. The free air gravity anomaly over the ocean were obtained from Danish National Space Center (DNSC08-GRA) with resolution 1’ x 1’ (Andersen et al., 2008)

HELMERT GRAVITY ANOMALY REFERRED TO THE EARTH’S SURFACE (HGES)
It was obtained from the sum of the free-air gravity anomaly, the direct and secondary indirect topographic effects on the gravitational attraction, direct atmospheric effect and geoid-quasigeoid correction to the fundamental formula of physical geodesy (Vaníček et al., 1999).

<table>
<thead>
<tr>
<th>effects</th>
<th>mean</th>
<th>std</th>
<th>max</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>-0.66</td>
<td>35.02</td>
<td>486.36</td>
<td>-253.49</td>
</tr>
<tr>
<td>DTE</td>
<td>0.30</td>
<td>3.35</td>
<td>105.25</td>
<td>-87.34</td>
</tr>
<tr>
<td>SITE</td>
<td>-0.016</td>
<td>0.04</td>
<td>-0.004</td>
<td>-0.36</td>
</tr>
<tr>
<td>DAE</td>
<td>-0.82</td>
<td>0.04</td>
<td>-0.61</td>
<td>-0.84</td>
</tr>
<tr>
<td>geoid-quasigeoid</td>
<td>-0.009</td>
<td>0.05</td>
<td>0.06</td>
<td>-0.77</td>
</tr>
<tr>
<td>HGES</td>
<td>-0.43</td>
<td>34.64</td>
<td>486.37</td>
<td>-253.49</td>
</tr>
</tbody>
</table>
The Stokes boundary value problem employs a modified Stokes’s formula in conjunction with the low-degree contribution of the Global Geopotential model. In the case of Argentina geoid, EGM2008 (Pavlis et al., 2008) was used up to the degree and order 150 as a reference spheroid.

The processing of the modified Stokes integral proposed by Featherstone et al. (1998) was carried out using FFT. This application uses the Meissl (1971) modification to the Vaníček and Kleusberg (1987) kernel.

FINAL SOLUTION OF THE GEOID

\[\text{South America Geoid (quasi-geoid)} \]

<table>
<thead>
<tr>
<th>effects</th>
<th>mean</th>
<th>std</th>
<th>max</th>
<th>min</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIAE</td>
<td>-0.006</td>
<td>0.0001</td>
<td>-0.0054</td>
<td>-0.0065</td>
</tr>
<tr>
<td>PITE</td>
<td>-0.06</td>
<td>0.18</td>
<td>-0.014</td>
<td>-1.96</td>
</tr>
<tr>
<td>Geoid</td>
<td>0.44</td>
<td>15.19</td>
<td>48.87</td>
<td>-57.39</td>
</tr>
</tbody>
</table>
The new geoid model were compared with height anomalies obtained by Global Geopotential Models (GGMs).

The attention has been addressed to the following GGMs:
- **EIGEN-GL05C** \((n=m=360)\) (Foerste et al., 2008) and
- **EGM2008** \((n=m=2160)\) and Tide Free system.

No zero-order term was considered to the geoid undulations in all cases.

<table>
<thead>
<tr>
<th>geoidal heights - height anomalies</th>
<th>Mean (m)</th>
<th>Stand. Desv. (m)</th>
<th>Max. value (m)</th>
<th>Min. value (m)</th>
<th>Kurtosis</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGEN_05C (360)</td>
<td>-0.05</td>
<td>0.51</td>
<td>3.38</td>
<td>-6.89</td>
<td>10.98</td>
<td>-2.04</td>
</tr>
<tr>
<td>EGM2008 (2160)</td>
<td>-0.00</td>
<td>0.42</td>
<td>3.61</td>
<td>-10.41</td>
<td>16.46</td>
<td>-1.56</td>
</tr>
</tbody>
</table>
The new geoid model has been compared with GPS observations carried out on benchmarks of the spirit levelling network in South America (Argentina, Brazil, Chile, Equador, Uruguay and Venezuela).

A total of 1416 GPS/BM points are available in this area. They have been delivered referred to WGS84 (SIRGAS2000)

<table>
<thead>
<tr>
<th>Statistic in South America</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS/BM -</td>
</tr>
<tr>
<td>Geoid</td>
</tr>
<tr>
<td>EIGEN_05C (360)</td>
</tr>
<tr>
<td>EGM2008 (2160)</td>
</tr>
</tbody>
</table>
GPS data over Bench Marks X GEOID
GPS data over Bench Marks X EIGEN_05C (360)

GPS data over Bench Marks X EGM2008 (2160)
The new geoid model has been compared with GPS observations carried out on benchmarks of the spirit levelling network in Brazil. A total of 916 GPS/BM points are available in this area. They have been delivered referred to SIRGAS2000.

Statistic in Brazil

<table>
<thead>
<tr>
<th>GPS/BM -</th>
<th>Mean (m)</th>
<th>Stand. Desv. (m)</th>
<th>Max. value (m)</th>
<th>Min. value (m)</th>
<th>Kurtosis</th>
<th>Skewness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoid</td>
<td>-0.40</td>
<td>0.51</td>
<td>2.88</td>
<td>-2.95</td>
<td>6.10</td>
<td>0.43</td>
</tr>
<tr>
<td>EIGEN_05C (360)</td>
<td>-0.37</td>
<td>0.58</td>
<td>2.87</td>
<td>-3.38</td>
<td>5.11</td>
<td>0.39</td>
</tr>
<tr>
<td>EGM2008 (2160)</td>
<td>-0.27</td>
<td>0.53</td>
<td>3.11</td>
<td>-3.64</td>
<td>7.16</td>
<td>0.61</td>
</tr>
<tr>
<td>MAPGEO 2004</td>
<td>0.52</td>
<td>0.66</td>
<td>3.97</td>
<td>-4.13</td>
<td>6.55</td>
<td>0.31</td>
</tr>
</tbody>
</table>
CONCLUSION

The GGMs with total order and degree show few difference statistics between geoidal heights with the mentioned geoid model, in flat areas. The highest differences are in the Andes and regions without terrestrial gravity data. The differences between geoidal heights and height anomalies derived from EGM08 are smaller than EIGEN05C. Despite of the efforts in recent years of different organizations, universities and research institutes to fill in the areas without terrestrial gravity data, there are still large gaps. The GGMs with total order and degree may show inconsistencies in these regions.
References

• Andersen et al., The DNSC08 ocean wide altimetry derived gravity field. Presented EGU-2008, Vienna, Austria, April, 2008
• Meissl, P. (1971). Preparations for the numerical evaluation of second-order Molodensky-type formulas, Report 163, Department of geodetic Science and Surveying, oho State university, Columbus, USA, 72 pp.

THANKS

Acknowledgements

The authors acknowledge Prof. Dr. Artur Ellmann (Tallinn University of Technology), Prof. Dr. Peter Vaniček and Prof Dr. Marcelo Carvalho dos Santos (University of New Brunswick), CNPq for supporting this research. The Activity has been partially undertaken with the financial support of Government of Canada provided through the Canadian International Development Agency (CIDA).