

Towards a new best estimate for the conventional value of W_0

L. Sánchez¹ (sanchez@dgfi.badw.de), R. Čunderlík², N. Dayoub³, K. Mikula², Z. Minarechová², Z. Šíma⁴, V. Vatrt⁵, M. Vojtíšková⁵, ¹ Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany,

² Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Slovakia 3 Department of Topography, Faculty of Civil Engineering, Tishreen University, Latakia, Syria Working Group on ⁴ Astronomical Institute, Academy of Sciences, Prague, Czech Republic

⁵ Geographic Service of the Czech Armed Forces, Military Geographic and Hydrometeorologic Office, Dobruška, Czech Republic

A global vertical reference system in agreement with the GGOS

objectives

GGOS promotes the establishment of a global gravity field-related vertical reference system to

1) provide a global frame of reference for consistently measuring and interpreting global change processes; 2) guarantee vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time); 3) support a highly-precise (at cm-level) combination of physical and geometric heights worldwide; and 4) allow the reliable unification of all existing local height datums.

The global vertical reference level

The reference level of the proposed global vertical reference system is

- 1) defined by a conventional W_0 value 2) realised by the geometric representation of the corresponding equipotential surface with respect to a reference ellipsoid (i.e. the geoid modelling).
- To ensure consistency between definition

Working Group on **Vertical Datum Standardisation**

In order to make a new best estimate for the W_0 value available, the Working Group on Vertical Datum Standardisation was established for the term 2011-2015 with the following main objectives

1) to identify the basic conventions needed to guarantee uniqueness, reliability and repeatability of the W_0

and realisation, the adopted W_0 value must be commensurate with measurements, models and standards used for the geoid computation. At present, the commonly accepted W_0 value is 62 636 856 m²s⁻². Recent W_0 computations show discrepancies of about -2 m²s⁻² and make evident the need of a new better W_0 estimate.

- estimate;
- 2) to release a recommendation about the W_0 value to be introduced as the reference level in the GGOS vertical reference system;
- 3) to outline a strategy for the local/regional realisation of the reference level defined by the new W_0 .

Conventions for a new W_0

- 1) Underlying convention: the geoid is the equipotential surface coinciding with the mean sea level;
- 2) Empirical estimation based on the combination of global models of the Earth's gravity field and the sea surface;
- 3) Known effect of the secular sea level change to facilitate the integration of the existing height systems;
- 4) Satellite-only gravity data to avoid uncertainties caused by the terrestrial gravity data referring to the local height datums;
- 5) Evaluation over ocean areas only because
- geometry of the sea surface is known with more accuracy than continental surfaces; • geoid and quasi-geoid are the same over oceans (identical reference level for normal and orthometric heights) • gravity effects of topographical features not scanned by satellite gravity are minimized (disregard of the omission error).

Strategy for the computation of W_0

- 1) Determination of the potential value of the sea surface by introducing the vanishing gravitational potential at infinity as main constraint;
- 2) The sea surface is given by a mean sea surface model: a set of discrete points with known coordinates derived from satellite altimetry;
- 3) Due to the sea surface topography (Ξ), the points describing the sea surface are not on the same equipotential surface and a further constraint is necessary:

Dependence of the W_0 estimate on the mean sea surface model

- 1) When the latitude coverage is reduced, features of the sea surface topography are excluded and W_0 decreases, i.e. it is not global.
- 2) By using the models MSS-CNES-CLS11 and DTU10 there is a difference of 0,31 m^2s^{-2} , which reflects the mean discrepancy of \sim 3 cm between both models. Possible causes:
 - Different strategies to process the altimetry data;
 - Different reductions taken into account in each model;
 - Different periods (inter-annual ocean variability).
- Alternative: use of yearly mean sea 3) surface models
 - the W_0 estimates reflect (with opposite sign) the sea level rise measured by satellite altimetry;

 W_0 estimates varying the latitude coverage of the sea surface model (models: MSS-CNES-CLS11, DTU10 and EIGEN-6C3).

- 4) The sea surface must be globally sampled to include all features of the sea surface topography, on the contrary, W_0 is not representative;
- 5) Since the mean sea level coincides with a different equipotential surface depending on the time span used for averaging sea surface heights, a certain epoch shall be selected.

Dependence of the W_0 estimate on the choice of the gravity model

• a reference epoch shall be adopted.

 W_0 estimates using yearly mean sea surface models derived from the OpenADB cross-calibrated sea surface heights (GGM: EIGEN-6C3).

- Ranging data are preferred. Recent models provide differences < 0,01 m²s⁻².
- 2) The use of a satellite-only gravity model is suitable. After n = 200 the largest differences are 0,001 m²s⁻², which are negligible.

Symposium SIRGAS 2014, November 24 - 26, 2014, La Paz, Bolivia