

en colaboración con:

ANÁLISIS DE LOS EFECTOS GENERADOS POR LA INCLUSIÓN DE LOS TÉRMINOS IONOSFÉRICOS DE ALTO ORDEN EN LA GENERACIÓN DE SOLUCIONES POSICIONALES DE ALTA PRECISIÓN

> SIMPOSIO SIRGAS 2015 Santo Domingo, República Dominicana 18 – 20 Noviembre 2015

Pilapanta, C. & Romero, R. Instituto Geográfico Militar del Ecuador. Quito – Ecuador

GENERALIDADES

Geográfico Militar

www.igm.gob.ec / www.geoportaligm.gob.ec

PRINCIPALES FUENTES DE ERROR EN EL POSICIONAMIENTO SATELITAL

Errores en la posición del satélite	Efemérides Precisas	
Errores instrumentales en el satélite		
✓ Reloj✓ Variaciones del centro de fase	 Posicionamiento Diferencial. Parametrización Calibración de antenas emisoras 	
Propagación de la señal		
 ✓ Tropósfera ✓ Ionósfera ✓ Multicamino (satélite y receptor) 	 Modelamiento. Efecto Troposférico Modelamiento. Efecto Ionosférico Selección del lugar. Parametrización 	
Variaciones de la posición del receptor		
 ✓ Mareas Terrestres ✓ Carga oceánica y atmosférica ✓ Movimientos Tectónicos 	 Modelamiento de variaciones Modelamiento de cargas Aplicación de velocidades lineales 	
Errores instrumentales en el receptor		
✓ Reloj✓ Variaciones del centro de fase	 Posicionamiento Diferencial. Parametrización Calibración de antenas receptoras 	
Ruidos		
 ✓ Saltos de Ciclo ✓ Propagación entre canales ✓ Interferencias y otros 	 Resolución de ambigüedades Mejoramiento de los equipos Medidas prácticas 	

Fuente: Sanchez, L. 2008

MODELAMIENTO DE VARIABLES ATMOSFÉRICAS. ECUACIÓN GENERAL

Geográfico Militar

Figura 2. Esquema básico de refracción atmosférica Fuente: Cioce, V. et al. 2010 $\delta \rho_{atm} = \int_{L} \left(n\left(s\right) - 1 \right) ds - \left(S - G\right)$

Ministerio de Defensa

ecuador

Ecuación General

$$n_{ph} = \frac{C}{V_{ph}}$$
 $n_{gr} = \frac{C}{V_{gr}}$

Índices de refracción (fases y código)

Donde:

- S Trayectoria verdadera
- G Distancia euclidiana
- C Velocidad de la luz
- v Velocidad de propagación

Geográfico Militar

Figura 3. Principio básico del proceso de refracción troposférica Fuente: COSMIC Program, 2012 citado en Herring, T. 2012

$$\delta \rho_{trop}(z) = m_{t,d}(z) \delta \rho_{trop,d}^{0} + m_{t,w}(z) \delta \rho_{trop,w}^{0}$$

$$\delta\rho_{trop}^{0} = 10^{-6} \int N(s) \, ds$$

Ministerio de Defensa

ecuado

Retraso Troposférico Cenital

O mediante el modelo simplificado:

$$\delta \rho_{trop}^{0} = \frac{2277 \times 10^{-6}}{\cos z} \left(P + \left\{ \frac{1255}{T} + 0, 05 \right\} \cdot e - 1, 16 \tan^{2} z \right)$$

Modelo de Saastamoinen (1972)

Donde:

- P Presión
- T Temperatura
- Z Ángulo de elevación

Jeográfico Militar

Figura 4. Mapa ionósférico Mundial Fuente: Naval Research Laboratory - USA. 2004

$$\phi_{LC} = \frac{f_1^2}{f_1^2 - f_2^2} \phi_1 - \frac{f_2^2}{f_1^2 - f_2^2} \phi_2$$

Ministerio de Defensa

Combinación Lineal. "Ionosphere-Free"

$$\delta \rho_{\text{ion}} = -40.3 * \frac{1}{\cos\left(\frac{R}{R+H}\sin z\right)} * \frac{Ev}{f^2}$$

Ecuación General. Modelo Simplificado

Donde:

Ζ

R

Н

F

Εv

ángulo zenital al cual la señal fue captada. distancia geométrica del receptor a la ionósfera. Altura (≈ 450 m) frecuencia (L1 y/o L2). Contenido total de electrones vertical (VTEC)

DENSIDAD ELECTRÓNICA Y EFECTOS DE LA IONÓSFERA SOBRE LA SEÑAL GPS

Geográfico Militar

Figura 5. Capas de la Ionósfera Fuente: Anderson and Fuller-Rowell (1999)

Razón Principal: Densidad electrónica de cada capa es variable

Dependencia:

- 1. Hora Localización
- 2. Radiación solar ionización
- 3. Actividad Geomagnética

Principales Efectos:

1. Retardo de la señal (hasta varias decenas de metros)

2. Centelleo de fase y de amplitud

Otros Efectos:

- 1. Rotación Faraday
- 2. Curvatura del rayo

Jeográfico Militar

- TEC. (Contenido Total de Electrones)

Ministerio de Defensa

Figura 6. Mapa ionósférico Mundial

Fuente: Naval Research Laboratory - USA. 2004

$$\Phi_1 = \rho + N_1 \lambda_1 - \frac{40.3 \int N_e dL}{f_1^2} - \frac{1.1284 \times 10^{12} \int N_e B \cos \theta dL}{f_1^3} - \frac{812.0 \int N_e^2 dL}{f_1^4}$$

Integración de los efectos del índice de refracción respecto a los términos de código y fase (Petrie, E. J. et. al. 2010)

Ministerio de Defensa Nacional

$$\Phi_1 = \rho + N_1 \lambda_1 - \frac{40.3 \int N_e dL}{f_1^2} - \frac{1.1284 \times 10^{12} \int N_e B \cos \theta dL}{f_1^3} - \frac{812.0 \int N_e^2 dL}{f_1^4}$$

Integración de los efectos del índice de refracción respecto a los términos de código y fase (Petrie, E. J. et. al. 2010)

Donde:

Geográfico Militar

PRIMER TÉRMINO IONOSFÉRICO
$$I1 = -\frac{40.3 \int N_e dL}{f_1^2}$$
,SEGUNDO TÉRMINO IONOSFÉRICO $I2 = -\frac{1.1284 \times 10^{12} \int N_e B \cos \theta dL}{f_1^3}$ TERCER TÉRMINO IONOSFÉRICO $I3 = -\frac{812.47 \int N_e^2 dL}{f_1^4}$

Jeográfico Militar

$$\phi_{LC} = \frac{f_1^2}{f_1^2 - f_2^2} \phi_1 - \frac{f_2^2}{f_1^2 - f_2^2} \phi_2$$

Ministerio de Defensa

Combinación Lineal. "Ionosphere-Free"

$$\delta \rho_{\text{ion}} = -40.3 * \frac{1}{\cos\left(\frac{R}{R+H}\sin z\right)} * \frac{\text{Ev}}{f^2}$$

Donde:

Ζ

R

Н

F

Ev

ángulo zenital al cual la señal fue captada.

distancia geométrica del receptor a la ionósfera.

Altura (≈ 450 m)

frecuencia (L1 y/o L2).

Contenido total de electrones vertical (VTEC)

Geográfico Militar

Ministerio de Defensa

$$\Phi_1 = \rho + N_1 \lambda_1 - \frac{40.3 \int N_e dL}{f_1^2} - \frac{1.1284 \times 10^{12} \int N_e B \cos \theta dL}{f_1^3} - \frac{812.0 \int N_e^2 dL}{f_1^4}$$

Integración de los efectos del índice de refracción respecto a los términos de código y fase (Petrie, E. J. et. al. 2010)

Figura 8. Mapa Ionosférico Global. 15 minutos de resolución (vTEC film produced with IONMON Version 1).

www.igm.gob.ec / www.geoportaligm.gob.ec

DESARROLLO

Geográfico Militar

www.igm.gob.ec / www.geoportaligm.gob.ec

OBJETIVO PRINCIPAL DEL ESTUDIO

MAPA. RED GNSS DE MONITOREO CONTINUO DEL ECUADOR. REGME

Jeográfico Militar

SE ESTABLECE UNA NECESIDAD ...

ANALIZAR EL EFECTO GENERADO, POR LA INCLUSIÓN O EXCLUSIÓN DE LOS TÉRMINOS DE ALTO ORDEN IONOSFÉRICO EN LA GENERACIÓN DE SOLUCIONES POSICIONALES DE ALTA PRECISIÓN EN LAS ZONAS DE MAYOR ACTIVIDAD IONOSFÉRICA Y GEOMAGNÉTICA. (ZONA CENTRO. ECUADOR CONTINENTAL – ZONA SUR. ESTACIÓN ANTÁRTICA ECUATORIANA "PEDRO VICENTE MALDONADO"

ZONAS DE ESTUDIO PRINCIPALES

MAPA. RED GNSS DE MONITOREO CONTINUO DEL ECUADOR. REGME

Jeográfico Militar

1. ZONAS DE ESTUDIO

ECUADOR CONTINENTAL

REG GNSS DE MONITOREO CONTINUO

CONTINENTE ANTÁRTICO ESTACIÓN CIENTÍFICA. PEDRO VICENTE MALDONADO

2. TIEMPO DE ESTUDIO

1 AÑO (REGME) - 1 MES (ANTÁRTIDA)

ZONAS DE ESTUDIO PRINCIPALES

MAPA. RED GNSS DE MONITOREO CONTINUO DEL ECUADOR. REGME

Jeográfico Militar

1. ZONAS DE ESTUDIO

ECUADOR CONTINENTAL

REG GNSS DE MONITOREO CONTINUO

CONTINENTE ANTÁRTICO ESTACIÓN CIENTÍFICA. PEDRO VICENTE MALDONADO

2. TIEMPO DE ESTUDIO

1 AÑO (REGME) - 1 MES (ANTÁRTIDA)

MODELO GENERAL DE PROCESAMIENTO

Geográfico Militar

RED DE PROCESAMIENTO PRINCIPAL

Geográfico Militar

Estaciones IGb08 CORE			
CÓDIGO	LOCALIDAD	PAÍS	
BRAZ	BRAZIL	BRASIL	
BRFT	EUSEBIO	BRASIL	
CHUR	CHURCHILL	CANADA	
CONZ	CONCEPCIÓN	CHILE	
CRO1	CHRISTIANSTED	USA	
GLPS	GALÁPAGOS	ECUADOR	
GOLD	GOLDSTONE	USA	
ISPA	ISLA DE PASCUA	CHILE	
LPGS	LA PLATA	ARGENTINA	
MAS1	MASPALOMAS	ESPAÑA	
MKEA	MAUNA KEA	USA	
OHI2	O'HIGGINS	CHILE (ANTARTIDA)	
PARC	PUNTA ARENAS	CHILE	
PDEL	PONTA DELGADA	PORTUGAL	
SCH2	SCHEFFERVILLE	CANADA	
STJO	ST JOHN'S	CANADA	
THTI	PAPEETE	POLYNESIA FRANCESA	
UNSA	SALTA	ARGENTINA	
USNO	WASHINGTON	USA	
WHIT	WHITEHORSE	CANADA	

Fuente: sirgas.org

www.igm.gob.ec / www.geoportaligm.gab.ec

ESTRATEGIA DE PROCESAMIENTO

CARÁCTERÍSTICAS PRINCIPALES DE PROCESAMIENTO. MARCO DE REFERENCIA

1. NÚMERO DE ESTACIONES A SER PROCESADAS

Geográfico Militar

35 ESTACIONES GNSS - REGME. AÑO 2015

01 ESTACIÓN GNSS – ANTÁRTIDA. ENERO 2015

2. MODELO IONOSFÉRICO GENERAL

CODE MODEL (GIM)

3. MODELAMIENTO DE TERMINOS IONOSFÉRICOS

ION_Model – GMAP. Petrie, E. et. al. 2010

RINEX_H0. Marques, H. 2011.

RED GNNS DE MONITOREO CONTINUO DEL ECUADOR

REGME

MODELO GENERAL DE MODELAMIENTO IONOSFÉRICO

Geográfico Militar

Geográfico Militar

Ministerio de Defensa Nacional

ecuado

Figura 10. Mapa ionósférico Mundial Fuente: Naval Research Laboratory - USA. 2004

RESULTADOS

Geográfico Militar

www.igm.gob.ec / www.geoportaligm.gob.ec

DIFERENCIAS PROMEDIO POR SEMANA SOLUCIÓN MODELO PETRIE E. ET. AL. 2010

Geográfico Militar

ESTADÍSTICAS GENERALES

DIFERENCIAS PROMEDIO POR SEMANA SOLUCIÓN MODELO MARQUES H. ET. AL. 2011

Geográfico Militar

ESTADÍSTICAS GENERALES

VALORES PROMEDIO

REPETIBILIDAD DE LA SOLUCIÓN AJUSTADA POR ESTACIÓN

ESTADÍSTICAS GENERALES

STABILIZATION WRMS. MULTI-STATION REPEATABILITY

Geográfico Militar

Figura 3.2 Repetibilidad Promedio por Estación GNSS

CONCLUSIONES

Geográfico Militar

www.igm.gob.ec / www.geoportaligm.gob.ec

CONCLUSIONES Y RECOMENDACIONES

eográfico Militar

R

- Los resultados preliminares demuestran, una mejoría en la generación de soluciones entre 3 y 4 milímetros en relación a las soluciones generadas sin la inclusión de los modelos, lo cual permite evidenciar una mejoría inicial en la obtención de coordenadas, así como en el modelamiento ionosférico habitual.
- Los resultados obtenidos establecen en primera instancia, una concordancia con lo establecido por los autores, sin embargo, debido a que el análisis solo se sustenta en la comparación de medias, los resultados demuestran una mejoría a nivel general (promedio) de las soluciones, más no una mejoría unificada.
- Debido a que los valores obtenidos por los diferentes modelos aplicados, poseen un comportamiento variable relacionado con los parámetros utilizados en el cálculo y corrección de los términos ionosféricos, es recomendable establecer un nuevo estudio mucho más minuicioso, a fin de establecer el aporte que genera cada parámetro y/o variable en el proceso.
- Es necesario establecer redes de cooperación internacional, enmarcadas en el estudio de los diferentes procesos relacionados con el uso de los sistemas de posicionamiento global, a fin de integrar y articular los procedimientos, metodologías y técnicas utilizadas por cada país y con ello fortalecer la generación de modelos locales y/o regionales.

GRACIAS POR SU ATENCIÓN ...

Christian G. Pilapanta A. christian.pilapanta@mail.igm.gob.ec

Geográfico Militar

Ricardo V. Romero Ch. ricardo.romero@mail.igm.gob.ec