

Primeros esfuerzos para el establecimiento del IHRF en Brasil

D. Blitzkow

A. C. O. C. de Matos

S. M. A. Costa

Laboratório de Topografia e Geodesia, Escola Politécnica, Universidade de São Paulo (USP), Brasil.

Centro de Estudos de Geodesia (CENEGEO), Brasil. Instituto Brasileiro de Geografia e Estatística (IBGE), Brasil

> Simposio SIRGAS 2017 27 al 30 de noviembre Mendoza - Argentina

Resumen

1.Estado actual de la distribución gravimétrica de las futuras estaciones IHRF;

2.Calculo preliminar del potencial perturbador.

El trabajo coordinado por el *GGOS Focus Area Unified Height System* pretende establecer una referencia vertical unificada global.

Con este fin, la Resolución IAG nº 1, divulgada durante la Asamblea General de la IUGG 2015, describe las cinco convenciones para la definición del *International Height Reference System (IHRS)*.

Para el establecimiento de las mismas se hace necesario la implantación del *International Height Reference Frame (IHRF)*.

El mismo resultará en un conjunto de estaciones con sus números geopotentiales calculados, esto es, el conocimiento de la diferencia entre el valor potencial de gravedad W_p de estas estaciones y el valor de potencial de gravedad

Wo (62.636.853,4 m²s⁻²)

de la superficie de referencia vertical.

Estas estaciones necesitan tener un vector de coordenadas $X(P)(X_p, Y_p, Z_p)$ y el potencial de gravedad W(P) (el número del geopotencial C(P)), sobre la superficie física, altamente preciso $(C(P) \sim 1 \times 10^{-2} \text{ m}^2\text{s}^{-2})$. Debido a esta necesidad, se hace inevitable el estudio de las variaciones temporales de estas estaciones, o sea, $\dot{X}(P)$, $\dot{W}(P)$ (o $\dot{C}(P)$).

Con el objetivo de la implantación de las mismas en Brasil, el *Instituto Brasileiro de Geografia e Estatística* (IBGE) ha seleccionado 6 estaciones de la *Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS* (RBMC) bien distribuidas en el territorio nacional, siendo ellas en las ciudades de:

- ✓ Brasilia (BRAZ), Distrito Federal;
- ✓ Fortaleza (CEFT), en el Estado de Ceará;
- ✓ Cuiabá (CUIB), en el Estado Mato Grosso;
- ✓ Imbituba (IMBT), en el Estado de Santa Catarina;
- ✓ Marabá (MABA), en el Estado de Pará;
- ✓ Presidente Prudente (PPTE), en el Estado de São Paulo.

Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS (RBMC) -IHRF

Requisitos sobre los datos de gravedad terrestre

- Puntos de gravedad distribuidos homogéneamente alrededor de las estaciones de referencia IHRF hasta 210 km (~ 2 °).
- ✓ Los datos de gravedad pueden existir o tienen que ser observados.
- Precisión mínima de los valores de gravedad: ± 20 μGal.
 i Lo posible y realista es 50 μGal !
- ✓ Posiciones de punto de gravedad con GPS.
- ✓ En las zonas de montaña ~ 50% más de puntos de gravedad.
- ✓ Se deben agregar incertidumbres de MGG y MDT.

Towards a first realization of the International Height Reference System (IHRS)

Laura Sánchez, Johannes Ihde, Roland Pail, Thomas Gruber, Riccardo Barzaghi, Urs Marti, Jonas Ågren, Michael Sideris, Pavel Novák European Geosciences Union General Assembly 2017

Vienna, Austria. April 25, 2017

Templat	te according	g to the
gravity	effect on the	e geoid
$(\Delta g = 1 \cdot 1)$	10 ⁻⁶ ms ⁻² →	1 mm)
Distance	Compart	# of points

Distance	Compart ments	# of points flat/mountain
10 km	1	4/8
50 km	4	20/ <mark>30</mark>
110 km	7	30/45
210 km	11	50/75
Sum	23	104/158

Distribución de puntos alrededor del RBMC - BRAZ

BRAZ – Brasília

Distribución de puntos alrededor del RBMC - BRAZ

Distancia	Num de puntos
10km (4/8)	53
10km to 50km (20/30)	469
50km to 110km (30/45)	1138
110km to 210km (50/75)	2188
TOTAL(104/158)	3848

LONG GMS	- 47 52 40.3283
LAT GMS	- 15 56 50.9112
ALT GEOM	1106.018
(metro)	

Diferencia entre los puntos gravimétricos hasta 210 km con relación al valor del punto más cercano a la RMBC.

Necesidad de nuevas campañas gravimétricas BRAZ

Distribución de puntos alrededor del RBMC - CEFT

CEFT – Fortaleza

Distribución de puntos alrededor del RBMC - CEFT

Distancia	Num de puntos
10km (4/8)	40
10km to 50km (20/30)	568
50km to 110km (30/45)	1060
110km to 210km (50/75)	4196
TOTAL(104/158)	5864

LONG GMS	- 38 28 22.5043
LAT GMS	- 03 42 38.9222
ALT GEOM	4.911
(metro)	

Diferencia entre los puntos gravimétricos hasta 210 km con relación al valor del punto más cercano a la RMBC.

Necesidad de nuevas campañas gravimétricas CEFT

Nuevos

puntos

con

Distribución de puntos alrededor del RBMC - CUIB

CUIB – Cuiabá

Distribución de puntos alrededor del RBMC - CUIB

Distancia	Num de puntos
10km (4/8)	8
10km to 50km (20/30)	71
50km to 110km (30/45)	243
110km to 210km (50/75)	982
TOTAL(104/158)	1305

LONG GMS	- 56 04 11.5196
LAT GMS	- 15 33 18.9468
ALT GEOM	237.443
(metro)	

Diferencia entre los puntos gravimétricos hasta 210 km con relación al valor del punto más cercano a la RMBC.

Necesidad de nuevas campañas gravimétricas CUIB

Nuevos puntos con espaciamientos de 5' entre ellos:

- 216 puntos hasta 100 km;
- 649 puntos de 100 km hasta 210 km;
- Total: 865 nuevos puntos.

Distribución de puntos alrededor del RBMC - IMBT

Distribución de puntos alrededor del RBMC - IMBT

Distancia	Num de puntos
10km (4/8)	43
10km to 50km (20/30)	322
50km to 110km (30/45)	1251
110km to 210km (50/75)	2322
TOTAL(104/158)	3938

LONG GMS	- 48 39 20.5970
LAT GMS	- 28 14 05.4220
ALT GEOM	31.406
(metro)	

Diferencia entre los puntos gravimétricos hasta 210 km con relación al valor del punto más cercano a la RMBC.

Necesidad de nuevas campañas gravimétricas IMBT

Nuevos puntos con espaciamientos de 5' entre ellos:

- 14 puntos hasta 100 km;
- 38 puntos de 100 km hasta 210 km;
- Total: 52 nuevos puntos.

Distribución de puntos alrededor del RBMC - MABA

MABA – Marabá

Distribución de puntos alrededor del RBMC - MABA

Distancia	Num de puntos
10km (4/8)	18
10km to 50km (20/30)	113
50km to 110km (30/45)	203
110km to 210km (50/75)	1103
TOTAL(104/158)	1437

	-
LONG GMS	- 49 07 20.2716
LAT GMS	- 05 21 44.5632
ALT GEOM	79.817
(metro)	

Diferencia entre los puntos gravimétricos hasta 210 km con relación al valor del punto más cercano a la RMBC.

Necesidad de nuevas campañas gravimétricas MABA

Distribución de puntos alrededor del RBMC - PPTE

PPTE – Presidente Prudente

Distribución de puntos alrededor del RBMC – PPTE

Distancia	Num de puntos
10km (4/8)	64
10km to 50km (20/30)	429
50km to 110km (30/45)	1449
110km to 210km (50/75)	3943
TOTAL(104/158)	5885

LONG GMS	- 51 24 30.7225
LAT GMS	- 22 07 11.6571
ALT GEOM	431.049
(metro)	

Diferencia entre los puntos gravimétricos hasta 210 km con relación al valor del punto más cercano a la RMBC.

Necesidad de nuevas campañas gravimétricas PPTE

Nuevos puntos con espaciamientos de 5' entre ellos:

- 25 puntos hasta 100 km;
- 165 puntos de 100 km hasta 210 km;
- Total: 190 nuevos puntos.

Naranja - GPS geodésico Púrpura - GPS topográfico Rojo - GPS navegación

Distribución de los datos gravimétricos con la característica del posicionamiento

Información IBGE

MBT

W(P) de estaciones IHRF

En la segunda etapa de este trabajo se presentan los primeros esfuerzos **del cálculo del W(P)** por el **método de Stokes y de Hotine**, en los dos casos se usó la integración numérica.

Se adoptó el modelo geopotencial EIGEN6C4 (n=m=200) para obtener los valores residuales de la anomalía de gravedad y del disturbio de gravedad para su uso en las respectivas integrales.

En ese estudio, el radio de integración fue de 100 km, debido a la deficiencia de levantamientos gravimétricos en el entorno de algunas estaciones y , mas importante, siendo que los modelos recientes del geopotencial con informaciones de satélites sólo son bastante confiables hasta grado y orden 200 (pequeño erro de comissão).

Primeros resultados del potencial perturbador sobre la <u>superfície geoidal</u> (m²s⁻²)

	componente de corta longitud de onda oriunda gravimetría terrestre	componente de larga longitud de onda derivada del modelo EIGEN-6C4	potencial pertubador final sobre la superficie geoidal
MABA	-0,50	-225,76	-226,26
BRAZ	0,08	-119,35	-119,26
CEFT	-0,39	-82,48	-82,87
CUIB	0,65	24,74	25,39
IMBT	1,65	18,48	20,13
PPTE	-0,25	-46,04	-46,29

Método de Stokes

Primeros resultados del potencial perturbador sobre la <u>superficie</u> <u>terrestre</u> (m²s⁻²)

	componente de corta longitud de onda oriunda gravimetría terrestre	componente de larga longitud de onda derivada del modelo EIGEN-6C4	potencial pertubador final sobre la superficie terrestre
MABA	-0,65	-225,79	-226,44
BRAZ	0,23	-119,43	-119,2
CEFT	-0,40	-82,45	-82,85
CUIB	0,89	24,60	25,49
IMBT	1,75	18,21	19,96
PPTE	-0,26	-46,76	-47,02

Método de Hotine

GRACIAS

