

Brazil and Russia space cooperation: recent projects and future perspectives in the field of GNSS monitoring and SLR stations

Renato A. Borges (UnB) and Geovany A. Borges (UnB)

Emails: raborges@ene.unb.br and gaborges@unb.br

Presented by: Sonia Costa (CGED/IBGE)

SIRGAS 2017 Workshop SLR en América Latina Mendoza — Argentina

Presentation outline:

- GLONASS measuring ground stations;
- GLONASS at UnB 1st referential station in Latin America:
 - Introduction;
 - Measuring ground station capability;
 - Current work at ground station;
 - R&D GLONASS data network;
 - Cooperative activities;
 - Current research and future perspectives.
- Final remarks.

GLONASS Measuring Ground Stations

GLONASS stations in Brazil

 GLONASS Differential Correction Station starts operation in 2013 at the University of Brasília.

GLONASS Measuring Ground Stations

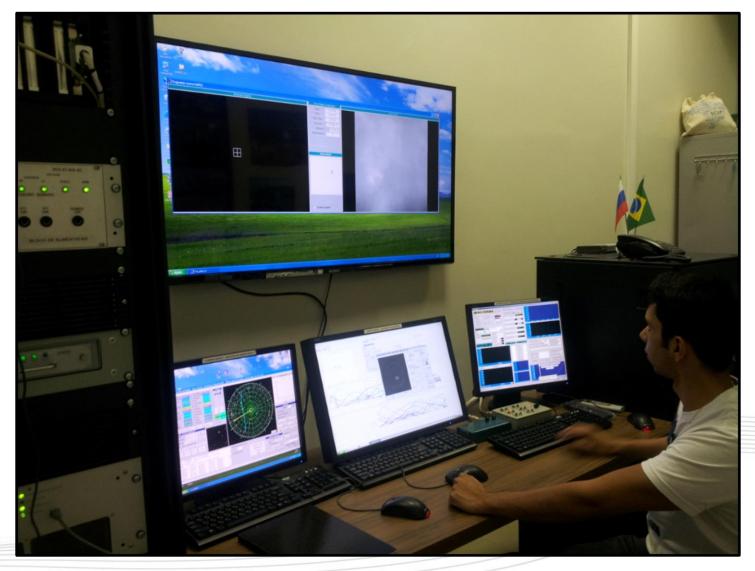
GLONASS stations in Brazil

GLONASS Quantum Optical Station with OWS starts operation in 2014.

GLONASS at UnB - Introduction

Timeline Overview:

- •2006 Brazilian and Russian governments signed an agreement to install GLONASS reference and monitoring stations in Brazilian territory;
- •2012 Brazilian Space Agency elected University of Brasília to receive the first station;
- •2013 GLONASS Differential Correction Station starts operation;
- •2014 GLONASS Quantum Optical Station with OWS starts operation.



OWS and LRS:

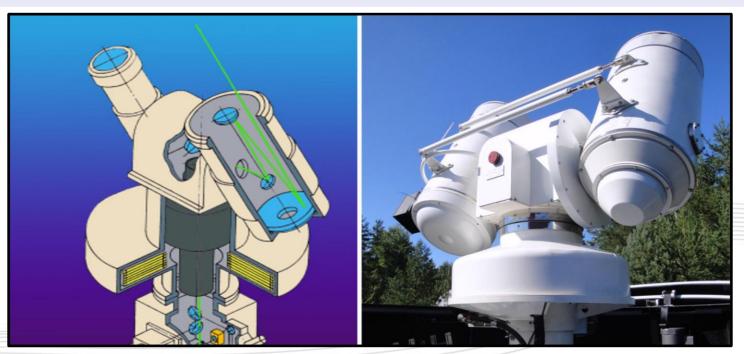
- L1 and L2 GNSS receiver MS-GLONASS IBPA.464346.003 (BRAJ station);
- IRLS Site Code BRAL, Station #7407, DOMES #48081S001, 15.7731 S, 132.1347 W;

Laser operation and data transfer server technical room

Laser operation and data transfer server technical room

Compact Laser-Optical System for SLR, Angular Measurements and Photometry

Mount type Az-El, with two flanges for equipment mounting

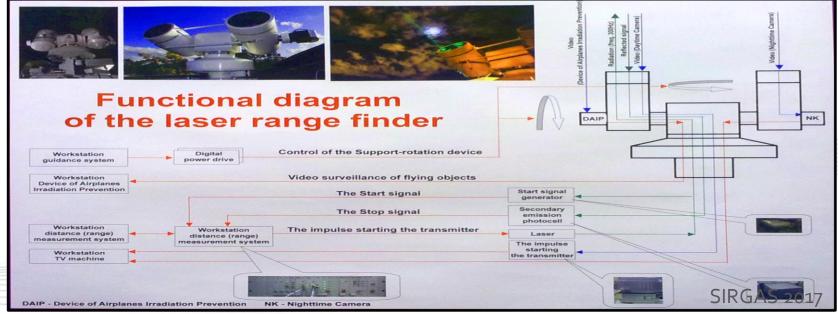

Digitally controlled torque motor drive

Equipment weight on each mount flange less than 20 kg

Angular elevation rotation range from 0 to 90 degrees

Angular azimuth rotation range from -270 to 270 degrees

Maximum angular speed and acceleration are 30 deg/s and 5 deg/s²



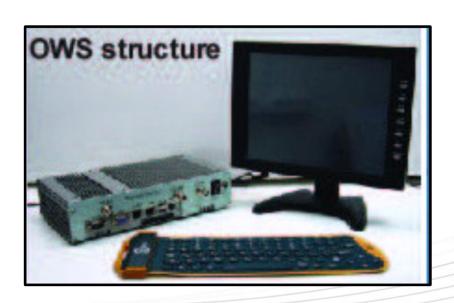
Compact Laser-Optical System Parameters: SLR of SC with retroreflectors					
Parameter Description	Feature				
SC orbit height range	400 to 36000 km				
Orbit height for SC daytime measurements	400 to 6000 km				
NP RMS error (averaging interval 60s)	0.5 to 2 cm				
Elevation range	20 to 85 degrees				

Compact Laser-Optical System Parameters: Angular measurements						
Parameter Description Feature						
Visual star magnitude	less than 14 ^m					
RMS error for SC angular velocity up to 40 arcsec	2"					

Compact Laser-Optical System Parameters: Photometry					
Parameter Description	Feature				
Visual star magnitude	less than 12 ^m				
Brightness determination error	0.2 ^m				

Laser Ranging System Parameters						
Parameter Description	Feature					
Operation wavelength	532 nm					
Pulse repetition rate	300 Hz					
Laser pulse duration	150 ps					
Minimum laser pulse energy	2 mJ					
Output beam divergence	5 arcsec					
Receive telescope diameter	25 cm					
Laser fire epochs accuracy	200 ns					

One Way GNSS Measurement Station


Double frequency GNSS precise receiver model MS-GLONASS IBPA.464346.003

RingAnt-G3T Javad antenna

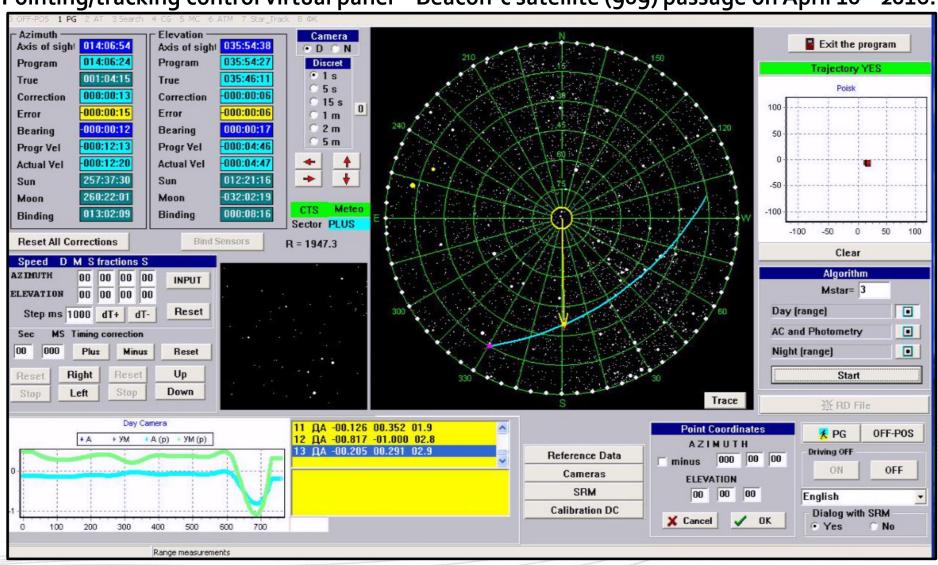
Signal tracking of GLONASS and GPS satélites in the visibility zone of the station

Measurements of GLONASS and GPS code pseudoranges and Doppler increments of distance and carrier frequency

Record of observation and navigation messages in RINEX format

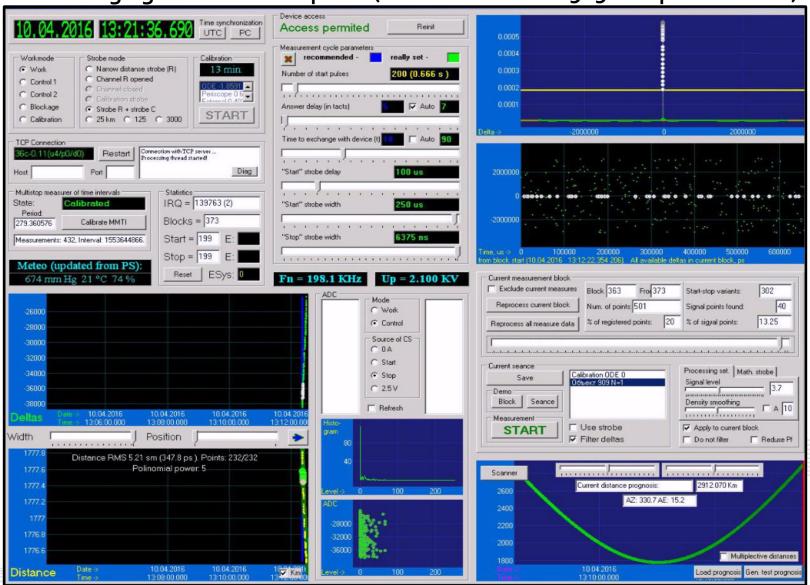
GLONASS at UnB – Current Work at Ground Station

Current work at the GLONASS measuring ground station:

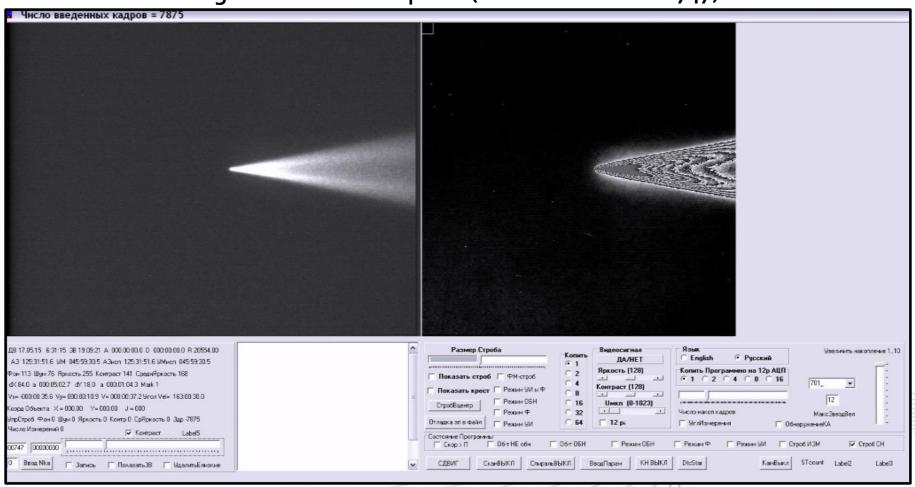

- Technical team training;
- Software and hardware update;
- Seminars about the GLONASS system and the UnB QOS;
- Authorities visits and technical tours at the station;
- Support to Russian teams visiting the station for maintenance and upgrade in the system;
- Carrying out regular sessions of measurements following the program of the Russian company (24/7 work);

Sample of the work done on April 4th 2016 – 40 success out of 74 tries.

Satellite	Start time PRMS	Ston	Roflested	Amount		Calibration	Trajectory		
number			Rising	Zenith	Downward				
551	02:33	02:43		244	3.14	9%			
859	02:49	03:02		-	-	9%			
744	03:08	03:25		-	-	8%			
742	03:28	03:34		334	4.13	9%			
716	03:49	04:03		-	-	9%			
715	04:09	04:20		206	3.44	9%			
744	04:25	04:33		182	3.44	9%			
990	04:36	04:43		2932	2.83	9%			
736	04:45	04:50		286	3.20	9%			
551	04:53	05:12		197	2.70	9%			j'
734	05:15	05:27		218	4.07	9%			
716	05:29	05:42		471	3.71	9%			j i
742	05:47	05:54		1029	3.30	9%			


GLONASS at UnB - Current Work at Ground Station

Pointing/tracking control virtual panel — Beacon-c satellite (909) passage on April 10th 2016.


GLONASS at UnB – Current Work at Ground Station

Laser ranging control virtual panel (Beacon-c satellite 909 on April 10th 2016).

GLONASS at UnB - Current Work at Ground Station

Night camera virtual panel (GLONASS satellite 747).

GLONASS at UnB – Current Work at Ground Station

BRAJ RINEX Observation Mixed File of April 8th 2016.

	11			VATION	DATA	M (1	MIXED)		RINEX VERSION / TYPE
JPS2RIN	v.2.0	.91	JAVAD	GNSS		201	60409	015044	UTC PGM / RUN BY / DATE
-Unknow	m-		-Unkn	own-					OBSERVER / AGENCY
BRAJ									MARKER NAME
03V6WE1	9VFR4T	30TRR2	WJAVAD	TRE G	3T	3.4	.10 Ju	1,04,2	013 REC # / TYPE / VERS
41194	99.307	4 -455	3620.9	961 -1	722828	.9085			APPROX POSITION XYZ
-Unknow	n-		RingA	NT-G3T					ANT # / TYPE
	0.000	0	0.0	000	0	.0000			ANTENNA: DELTA H/E/N
1	1								WAVELENGTH FACT L1/2
21	C1	P1	L1	D1	S1	C2	P2	L2	D2# / TYPES OF OBSERV
	52	C5	L5	D5	S5	C7	L7	D7	S7# / TYPES OF OBSERV
	C8	L8	58						# / TYPES OF OBSERV
30.	000								INTERVAL
2016	4	8	0	0	0.0	000000	G	PS	TIME OF FIRST OBS
2016	4	8	23	59	30.0	000000	G	PS	TIME OF LAST OBS
17									LEAP SECONDS
65									# OF SATELLITES
G 1	754	754	754	754	754	754	754	754	754PRN / # OF OBS
	754	754	754	754	620	0	0	0	OPRN / # OF OBS
	0	0	0						PRN / # OF OBS
G 2	743	743	743	743	743	0	743	743	743PRN / # OF OBS
	743	0	0	0	0	0	0	0	OPRN / # OF OBS
	0	0	0						PRN / # OF OBS
G 3	960	960	960	960	960	960	960	960	960PRN / # OF OBS
	960	960	960	960	953	0	0	0	OPRN / # OF OBS
	0	0	0						PRN / # OF OBS
G 4	1268	1255	1255	1268	1255	0	1255	1255	1255PRN / # OF OBS

GLONASS at UnB – R&D GLONASS Data Network

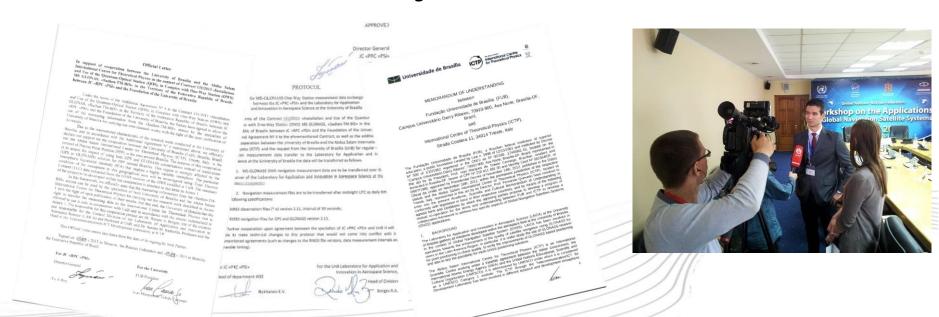
Summarized timeline overview:

- •Sep. 22nd 2015 CPD/UnB FTP server for data transfer set up;
- •Sep. 25th 2015 Measurement data transfer protocol signed;
- •Oct. o1st 2015 UnB regular data transfer started;
- •Feb. 16th 2016 ITEP regular data transfer started;
- •Apr. 20th 2016 UFSM regular data transfer started;

Current data transfer protocol:

Data format:

- RINEX observation file version 2.11, interval of 30 seconds, including approximation position header field;
- RINEX navigation file for GLONASS and GPS version 2.11;


Data period:

- Daily starting on Oct. 01st 2015 from UnB station;
- Daily starting on Feb. 16th 2016 from ITEP station;
- Daily starting on Apr. 20th 2016 from UFSM station;
- RINEX navigation file for GLONASS and GPS version 2.11;
- Other periods: March, April, June and July of 2015 (UnB station only).

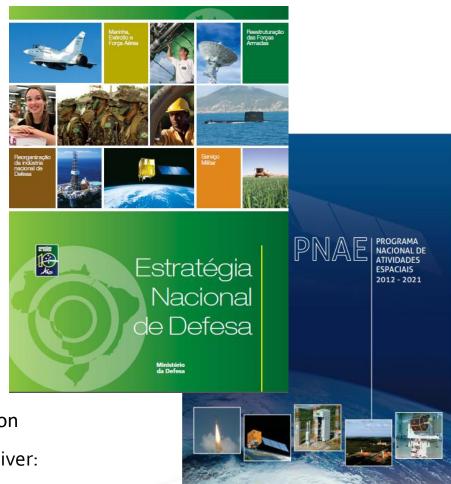
GLONASS at UnB – Cooperative Activities

Cooperation between UnB and The Abdus Salam International Centre for Theoretical Physics - ICTP (Trieste/Italy):

- •May 18th 2015 ICTP and UnB representatives first talk during the Workshop on Applications of GNSS at Krasnoyarsk, Russia;
- •Sept. 15th 2015 –Official Letter in support of the cooperation enters into force;
- •Jan. 26th 2016 MoU formalizes the scientific research cooperation between the UnB and the ICTP in the field of PPP in the region of Brasilia.

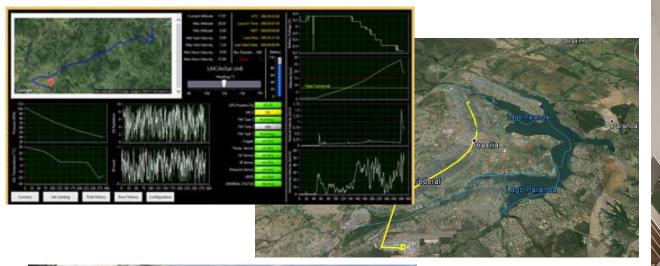
GLONASS at UnB – Current Research and Perspectives

Current team at LAICA in the field of GNSS:

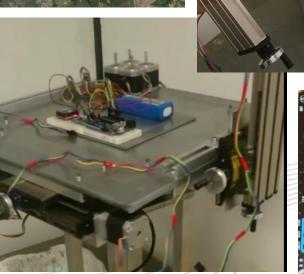

- 5 professors;
- 6 undergraduate students;
- 1 master student;
- 7 technical operators and support staff.

GNSS related topics under investigation:

- GNSS single frequency module:
 - Impact point prediction;
 - Attitude determination;
 - High altitude ballons experiments (LAICAnSat);
 - Advanced filtering solutions for GNSS/INS integration
- •MS-GLONASS IBPA.464346.003 dual frequency receiver:
 - Precise Point Positioning (PPP).


Brazilian national defense strategy and space activities:

- Project aligned with the interests of the Defense and Science and Technology ministries;
- Improve and develop national capability in the field geo location and positioning within the field of aerospace systems.



GLONASS at UnB – Current Research and Perspectives

Possible applications and test facilities at LAICA/UnB

GLONASS at UnB – Current Research and Perspectives

Possible applications and test facilities at LAICA/UnB

In conclusion:

- The GLONASS station in Brazil represents an excellent opportunity for the advancement of research on GNSS in Brazil and also to improve the accuracy of PNT in South America;
- These first years operating the station was important for technical team training, adjustment of the station equipment, providing a better understanding of the weather condition, collecting data for post processing and establish new research partners in the field of GNSS;
- Investigation within the PPP Project is going to continue in the region of Brasilia, Brazil using the data from the R&D GLONASS data network.

Future perspectives include:

- Practical applications on HASP (LAICAnSat);
- Onboard attitude determination;
- Impact point prediction;
- High precision applications with UAVs and mobile robots.

Thank You For Your Attention!

Acknowledgements:

