

Towards a Kinematic Geodetic Reference Frame: The Challenges of the Implementation of the SIRGAS Frame and ITRF in Argentina

Demián D. Gómez, Michael Bevis, Diego Piñón and Sergio Cimbaro

Presentation Outline

Geodetic RFs at national mapping agencies: what do we need?

- **Single conventional epoch**, accessible to all users at any point in time, to promote homogeneity within the nation
- Adequate models to access the conventional epoch, even after earthquakes (whenever possible)
- Due to current lack of capacity, changes in conventional epoch or RF realization can generate discontinuities across boundaries (provincial, municipal, etc) → we try to avoid changes

In Argentina, 10 years after the publication of POSGAR07 (current official frame), there are still provinces using POSGAR94!

PROBLEM: trying to keep POSGAR07 for too long

- BUT WHY? \rightarrow mostly jitters
- With time, the station velocities of a specific ITRF realization start decaying
- Variations in station velocities generate biases in coordinates

Example: IGM1

ITRF jump of the Maule earthquake in the vertical component is overestimated

Bias in the vertical velocity of the station of ~0.9 mm/yr

In 5 years, this is equal to a position bias of 5 mm.

JITTER!

Fixed trajectory models

Fixed trajectory models Solution Polyhedron

Fixed trajectory models

Et voilà! A jitter!

No missing station With missing station

Back to keeping conventional epoch coordinates: POSGAR07

1998.0	2006.632	POSGAR07c (IGS20)	2022.0
1998.0	2006 <mark>632</mark>	POSGAR07b (IGS14)	2019.5
	2006.632	POSGAR07 (IGS05)	

- At some point, a frame change is inevitable!
- But we have time to prepare people and institutions

Towards an ISO standard for geodetic reference frames

- ITRS is the adopted standard for geospatial and scientific positioning (ITRF is the numerical realization of the ITRS)
- This standard can be achieved by closely aligning to ITRE, as defined by ISO 19161-1 (under development and in approval stage)

 Dynamic (or kinematic) realizations are also being included in this standard (temporal variations of the parameters)

Subcommittee on Geodesy Report at the UN-GGIM 9th session (New York Aug 2019)

POSGAR07b: the first operative **Kinematic Reference Frame** (KRF) in the Americas

- In traditional RFs, trajectory parameters for the stations are kept constant
- In a KRF, trajectory parameters change every time new solutions are added
- A KRF is defined using kinematic trajectory models, using all the available components (Extended Trajectory Model, ETM)
- We prefer the term "kinematic" because these RFs do not include any physics or causal models to define them (although this would be possible)

Kinematic Reference Frame Stacking

- Very fast realization using iterative technique
- Past solutions don't change, they stay static (unless there's a new ITRF / IGS frame)
- Parameters change as solutions are added to the stack
- Can be done both for global or regional stacks, as we have shown

What is the advantage of KRF stacking?

- The stack can last longer because trajectories are recomputed every time new solutions are added
- The temporal change in trajectory parameters could be modeled (?)
- No more jitters due to incorrect models
- Stations are not "lost" after large trajectory changes (e.g. earthquakes)
- New stations can be incorporated into the stack at any time

The ITRF / POSGAR lifecyle

POSGAR07c (ITRF20)

Conclusions

- We have shown how **constant trajectory parameters** can introduce **jitters** and other **biases** in station coordinates
- We presented the notion of kinematic reference frames
- **POSGAR** has embraced the **temporal change of parameters**, leading the next generation of geodetic (geometric) reference frames
- We have presented a suggested **workflow** that accounts for ITRF changes without perturbing the RF users
- All the code to do this is available through GitHub (Parallel.GAMIT)

Muito obrigado! Muchas gracias! Thank you!