

UNIVERSIDADE FEDERAL DO PARANÁ

ENGENHARIA CARTOGRÁFICA E DE AGRIMENSURA

ANÁLISE DE SÉRIES TEMPORAIS DE UMA ESTAÇÃO DA REDE BRASILEIRA DE MONITORAMENTO CONTÍNUO DOS SISTEMAS GNSS.

ARIADNY APOLONIO

Prof. Dra Claudia Pereira Krueger Doutorando Christian Gonzalo Pilapanta Amagua

CURITIBA, 2019

"Uma série temporal é qualquer conjunto de observações ordenadas no tempo"; (Morettin, P. & Toloi, C. 2014).

1 CONSIDERAÇÕES INICIAIS

Na **geodésia** fala-se em séries de coordenadas

Modelo funcional = modelo linear de trajetórias

(modelo cinemático).

Figura. Série de tempo de coordenadas. Estação GNSS JPLM. IGS (Fonte: Herring, T. A. et al. 2018)

1 CONSIDERAÇÕES INICIAIS

Qual o objetivo da análise temporal?

- Abordagem Geofísica:
 - explicar o comportamento dos fenômenos, (e.x. deslocamento por fenômenos físicos, terremotos, efeitos de carga, erosão ...).
- Abordagem Geodésica:
 - melhorar a acurácia da solução através da modelagem/redução dos efeitos causados pelos fenômenos sazonais [Dach and Dietrich, 2000] (e.x. materialização do sistema de referência terrestre).

GNSS Receiver CONZ

Figura. Exemplo de objetivo geofísico Fonte: Adaptado Pilapanta,2018

1 CONSIDERAÇÕES INICIAIS

Figura. Degradação das velocidades função da periodicidade (Fonte: Blewitt, G. & Lavallée, D. 2002)

- Principal problema na análise de séries: Periodicidade
 - Variações nas condições atmosféricas
 - Variação das massas (ciclo hidrológico) = Efeitos de carga
 - Erros sistemáticos (monumentos ou elementos das antena)
- Possíveis soluções (Herring, et al. 2018):
 - Para levantamentos geodésicos contínuos: Maior tempo de rastreio (ver figura).
 - Para levantamentos geodésicos por campanhas: de ser possível realizar observações na mesma época a cada ano e/ou modelar a periodicidade dos dados (objeto deste estudo).

Na Figura Acima: velocidades de um sinal sinusoidal (seno e cosseno); Embaixo: máximo (max) e Desvio quadrático médio (RMS) das velocidades de um sinal sinusoidal anual .

2 OBJETIVOS

Objetivo Principal: Estudar o comportamento temporal da estação GNSS de monitoramento contínuo NAUS (Manaus) entre os anos de 2011 e 2014 (3 anos), visando identificar e quantificar os efeitos dos diferentes sinais físicos presentes séries de nas coordenadas posterior sua е filtragem.

Objetivos Específicos:

- Identificar e quantificar os diferentes sinais físicos presentes nas séries de coordenadas;
- Analisar a acurácia das coordenadas obtidas antes e após a filtragem dos diferentes efeitos físicos.

3 Área de estudo

Figura. Localização da Estação GNSS de Monitoramento Contínuo NAUS Fonte: Pilapanta, C. et al. 2018

Processamento de dados

Figura. Localização da Estação GNSS de Monitoramento Contínuo NAUS (Fonte: Pilapanta, C. et al. 2018)

Software: Bernese GNSS. Versão 5.2

Método de processamento: Pós-processamento por linhas de base

Período de processamento: 2011 - 2014

Metodologia base:

- BRUNINI, C. et al. Improved Analysis Strategy and Accessibility of the SIRGAS Reference Frame. International Association of Geodesy Symposia, v. 136, p. 3–10, 2012. ISSN 09399585.
- SÁNCHEZ, 2017. Diretrizes para os Centros de Análise SIRGAS.

Análise de séries temporais

Figura. Esquema fundamental da Séries Temporais Fonte: Autora (2019)

Comprovação do método de decomposição

 somatória de 4 harmônicos principais (M2, S2, N2 e K2) e um sinal de ruído branco.

ORD	SÍMBOLO	VALORES ORIGINAIS			
		AMPLITUDE (mm)	FREQUÊNCIA (ciclos/hora)		
1	M2	0,53	12,42		
2	S2	0,24	12,00		
3	N2	0,15	12,66		
4	K2	0,10	11,97		

TABELA – Amplitude e frequência dos harmônicos Fonte : ADAPTADO PILAPANTA (2018).

Comprovação do método de decomposição

• Geração de uma série maregráfica

- valores estatisticamente iguais
 - nível de confiança 95 % (teste de médias)

		VALORES	ORIGINAIS	VALORES DETECTADOS		
ORD	SÍMBOLO	AMPLITUDE (mm)	FREQUÊNCIA (ciclos/hora)	AMPLITUDE (mm)	FREQUÊNCIA (ciclos/hora)	
1	M2	0,53	12,42	0,54	12,43	
2	S2	0,24	12,00	0,31	12,01	
3	N2	0,15	12,66	0,18	12,65	
4	K2	0,10	11,97	0,06	11,82	

TABELA – Amplitude e frequência dos harmônicos Fonte : Adaptado Pilapanta (2018).

11

4 RESULTADOS

Sinais por Efeitos de Carga

•Detecção/ Sinais

Efeitos de cargas individuais

Fonte: Autora (2019)

Sinais por Efeitos de Carga

Figura – Estação GNSS Nauss Fonte: Autora (2019)

SIMBOLO	AMPLITUDE (dB)	PERÍODO		ciunau a	AMPLITUDE	PERÍODO	
		(cpd)	(cpa)	SIMBOLO	(dB)	(dias)	(anos)
	NTAL				NTOL		
A01	1,12	349,60	1,0	O01	0,22	349,60	1,0
A02	0,73	388,44	1,1	003	0,21	184,00	0,5
A03	0,33	317,82	0,9	004	0,21	499,43	1,4
A04	0,26	184,00	0,5	005	0,17	388,44	1,1
A05	0,24	437,00	1,2	006	0,14	68,55	0,2
	HYDL				SLEL		
H01	33,42	349,60	1.0	S01	0,87	349,60	1,0
H02	25,76	388,44	1,1	S02	0,69	388,44	1,1
H03	11,70	317,82	0,9	S03	0,33	317,82	0,9
H04	8,32	699,20	1,9	S04	0,26	437,00	1,2
H05	8,21	874,00	2,4	S05	0,17	699,20	1,9

TABELA – Harmônicos detectados nas séries temporais dos efeitos de carga Fonte: AUTORA (2019)

4 RESULTADOS

Reconstrução e Filtragem dos sinais de carga

 Série de coordenadas uma vez filtrada os 10 primeiros harmônicos reconstruídos.

Figura. Estação GNSS NAUS série de Tempo filtrada. Fonte: Autora 2019

Figura. Sinal reconstruído. Estação GNSS de Monitoramento Contínuo NAUS Fonte: Autora 2019

4 RESULTADOS

Análise da precisão da série de coordenadas após a filtragem

• Critério de Informação Bayesiano - BIC

TABELA – Variância obtidas por modelo estocástico Fonte: AUTORA 2019.

- A estação NAUS, possui repetibilidades relativamente maiores, as quais em princípio devem-se a presença de processos relacionados à proximidade da estação GNSS com vertentes de rio. Isto foi verificado através da decomposição das séries, onde os sinais provenientes do efeito de carga hidrológica tem maiores amplitudes ;
- Baseados na comparação direta das soluções, foi possível determinar uma melhoria geral na repetibilidade das coordenadas após a filtragem dos diferentes efeitos de carga.
- Recomenda-se realizar novos estudos através da análise dos efeitos de carga individuais com o objetivo de quantificar seu efeito em cada uma das componentes dos pontos.

REFERÊNCIAS

PILAPANTA, C. G.; KRUEGER, C. P.; TIERRA, A. Avaliação do impacto do efeito de carga por pressão atmosférica em posicionamento GPS de alta precisão nas regiões do Equador Continental e da Amazônia Brasileira; Dissertação 2018.;

DACH, R. et al. User Manual of the Bernese GNSS Software, Version 5.2. Astronomical Institute, University of Bern, 2015. 884 p. ISBN 978-3-906813-05-9. Disponível em: http://www.bernese.unibe.ch/docs/DOCU52.pdf;

GEMAEL, C.; ANDRADE, J. B. Geodésia Celeste. 2. ed. Curitiba: Editora UFPR, 2003;

GÉRARD, P.; LUZUM, B. IERS Conventions (2010). [S.I.], 2010. v. 36. Disponível em: http://www.iers.org/TN36/;

HALL, M. Resolution and uncertainty in spectral decomposition. First Break, v. 24, n. 12, p. 43-47, 2006;

KRUEGER, C. P.; EURIQUES, J. F.; VISKI, A. R.; HUINCA, S. C. M.; WERLICH, R. M. C. *Desenvolvimentos do Laboratório de Geodésia Espacial e Hidrografia*. Anais do XXVII Congresso Brasileiro de Cartografia. Rio de Janeiro, 2017. Disponível em: http://www.cartografia.org.br/cbc/2017/trabalhos/2/fullpaper/CT02-44_1506826271.pdf>. Acesso em: 01/02/2019;

LI, Z. et al. A comparison of hydrological deformation using GPS and global hydrological model for the Eurasian plate. Advances in Space Research, COSPAR, v. 60, n. 3, p. 587–596, 2017. ISSN 18791948. Disponível em: http://dx.doi.org/10.1016/j.asr.2019.04.023> e

MORETTIN A. P; TOLOI C. M. C. Análise de séries temporais; segunda edição revista e ampliada 2006.

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Obrigada!