The IGS Real-Time Service: Status and Developments

Andrea Stürze, Peter Neumaier, Wolfgang Söhne
Contents

I. IGS Real-Time Service and it’s Global Infrastructure

II. Open Data and Formats
 ▪ Formats for multi-GNSS Real-Time Observation and Navigation Data
 ▪ Formats for multi-GNSS Real-Time Products
 ▪ Open Source Software

III. Naming Conventions for IGS Real-Time Data Streams
 ▪ Introduction of the new Naming Conventions
 ▪ Observation Data Streams
 ▪ Navigation or Product Data Streams
I. IGS Real-Time Service and it’s Global Infrastructure

- 2007: CfP “IGS Real-time Pilot Project”
 - RT Tracking Stations
 - RT Data Centers
 - RT Analysis Centers
 - RT Associate Analysis Centers
 - RT Analysis Center Coordinator
 - RT Network Management and Monitoring
 - RT Users

- 2013: IGS Real-Time Service (RTS) Pilot Project
- 2017: IGS Real-Time Service (RTS) operational
I. IGS Real-Time Service and it’s Global Infrastructure

- 500+ IGS Stations -> ~265 RT Stations (~ 235 at BKG www.igs-ip.net caster)
I. IGS Real-Time Service and it’s Global Infrastructure

- Several Data Centers / Casters
 - Global broadcasters: BKG, CDDIS, IGSCB
 - Continental / regional broadcasters, e.g. EUREF (ASI, BKG, ROB), APREF (GA); SIRGAS experimental caster?
 - National / local broadcasters, e.g. IBGE (Brasil)

- Strategy / Goal
 - Each RT data stream available at all global broadcasters
 - Identical mountpoint name at each global caster
 - Upload independently to, at least, two different casters
I. IGS Real-Time Service and it’s Global Infrastructure

- Several Analysis Centers
 - GPS: ESA/ESOC, NRCan
 - GPS+GLONASS: BKG
 - Multi-GNSS: CAS, CNES, DLR, GFZ, GMV, WHU

- Combination Center(s)
 - ESA/ESOC (GPS – 9 ACs), BKG (GPS+GLO – 7 ACs)
 - Mountpoints from combined solutions
 - IGS01 -> SSRA01IGS0
 - IGS02 -> SSRA02IGS0
 - IGS03 -> SSRA03IGS0
 - IGC01 -> SSRC01IGS0
I. IGS Real-Time Service and it’s Global Infrastructure

GPS Clock Standard Deviation (ns) Against IGS Rapids

L. Agrotis, 2020
I. IGS Real-Time Service and it’s Global Infrastructure

GLONASS Clock Standard Deviation (ns) Against ESA Rapids

L. Agrotis, 2020

![Graph showing GLONASS Clock Standard Deviation against ESA Rapids. The x-axis represents dates from 21.04.2014 to 20.03.2020, and the y-axis represents a range from 0 to 1. Different markers represent different satellites and services, such as BKG_11, CNES_91, DLR_21, GMV_80, and IGS03.](image-url)
I. IGS Real-Time Service and it’s Global Infrastructure

- **Real-Time Management** within the IGS:
 - IGS Real-Time Working Group, chaired by André Hauschild from DLR
 - mountpoint naming conventions
 - organisation of broadcaster structure
 - compiling IGS broadcaster guidelines
 - cooperation with IGS SSR Task Force
 - future RT data and product dissemination
 - establishment of the SSR Task Force to develop a format for Real-Time IGS products
II. Open Data and Open Formats

- Formats for **multi-GNSS Real-Time Observation Data**
 - Legacy RTCM Message Types
 - For GPS: 1001-4 and
 - For GLONASS: 1009-12
 - Replaced by RTCM **Multiple Signal Messages** (MSM)
 - For maximum compatibility with RINEX version 3
 - Universality for all existing and future GNSS
 - MSM1-5: standard precision messages
 - MSM6-7: high precision messages
 - MSM5/7: with GNSS phase range rates in addition
 - MSM5: for transmission of a complete set of RINEX v3 observations
 - MSM7: for transmission of a complete set of RINEX v3 observations with extended resolution
II. Open Data and Open Formats

- Formats for multi-GNSS Real-Time Observation Data
 - Available RTCM Multiple Signal Messages:
 - 1071-77 MSM1-7 for GPS
 - 1081-87 MSM1-7 for GLONASS
 - 1091-97 MSM1-7 for Galileo
 - 1101-07 MSM1-7 for SBAS
 - 1111-17 MSM1-7 for QZSS
 - 1121-27 MSM1-7 for BDS
 - 1131-37 MSM1-7 for IRNSS/NaviC
 - Recommended MSM type within the IGS Real-Time Network:
 - MSM7
 - MSM5 if the bandwidth for transmission is limited
II. Open Data and Open Formats

- Formats for **multi-GNSS Real-Time Navigation Data**
 - RTCM Message Type 1019 for GPS
 - RTCM Message Type 1020 for GLONASS
 - RTCM Message Type 1045 for Galileo F/NAV
 - RTCM Message Type 1046 for Galileo I/NAV, reference for SSR corrections
 - RTCM Message Type 1042 for BDS
 - RTCM Message Type 1043 for SBAS
 - RTCM Message Type 1044 for QZSS
 - RTCM Message Type 1041 for IRNSS/NaviC
II. Open Data and Open Formats

Formats for multi-GNSS Real-Time Products

<table>
<thead>
<tr>
<th>SSR</th>
<th>Multi-stage/scalability</th>
<th>RTCM-SSR</th>
<th>IGS-SSR</th>
<th>Compact SSR</th>
<th>STARTN</th>
<th>SSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTCM framing</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SV clock: high rate clock</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>SV clock: low rate clock</td>
<td>available</td>
<td>available</td>
<td></td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>SV orbit</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>SV code bias</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>SV phase bias</td>
<td>Prop/tested</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>Ionosphere: global VTEC</td>
<td>Prop/tested</td>
<td>available</td>
<td></td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>Ionosphere: global STEC</td>
<td>under discussion</td>
<td>under discussion</td>
<td></td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>Ionosphere: regional STEC</td>
<td>under discussion</td>
<td>under discussion</td>
<td></td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>Ionosphere: Residual gridded/station</td>
<td>under discussion</td>
<td>under discussion</td>
<td></td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>Troposphere: global</td>
<td>under discussion</td>
<td>under discussion</td>
<td></td>
<td></td>
<td>in preparation</td>
<td></td>
</tr>
<tr>
<td>Troposphere: regional</td>
<td>under discussion</td>
<td>under discussion</td>
<td></td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>Troposphere: residual gridded/station</td>
<td>under discussion</td>
<td>under discussion</td>
<td></td>
<td>available</td>
<td>available</td>
<td></td>
</tr>
</tbody>
</table>
II. Open Data and Open Formats

- Open Source Real-Time Software provided by BKG
 - **BKG Ntrip Client (BNC)**
 - current version BNC v2.12 supports Open Real-Time Formats for
 - Observation Data: Legacy RTCM and RTCM MSM 3-7 messages
 - Navigation Data: RTCM Messages for GPS, GLONASS, Galileo, QZSS, SBAS, BDS, IRNSS
 - SSR-Products: RTCM-SSR (standardized and proposed messages) and IGS-SSR
 - Development version BNC v2.13 will support
 - Different PPP approaches for 4 G: GPS, GLONASS, Galileo, BDS
 - Clock combination for 4 G: GPS, GLONASS, Galileo, BDS
 - **BKG Professional Ntrip Caster**
 - Current version is 2.0.37
III. Naming Conventions for IGS Real-Time Data Streams

- 10-character **mountpoint naming convention** of the IGS real-time working group (IGS-RTWG)

 - 2014 – Agreement on a new concept of file names based on the 9-digit station IDs, in connection with the introduction of the RINEX 3.02 file format (ftp://igs.org/pub/data/format/rinex302.pdf)

 - 2018 - Approval of the proposal by the IGS-RTWG in February 2018
 - 2020 - Final implementation at all IGS Global Casters (BKG, CDDIS, IGSCB)
III. Naming Conventions for IGS Real-Time Data Streams

- 10-character **Observation Data Stream** "TTTTMRAAASF", where
 - TTTT: station marker name
 - M: monument or marker number (0-9)
 - R: receiver number (0-9)
 - AAA: three-letter ISO country code
 - F: data stream format, recommended to use “0” for the best RTCM3 data stream (e.g. RTCM3 MSM7)

Examples for station WT21 (Wettzell)
- WT2100DEU0 - Station WT21, LEICA receiver, RTCM data stream
- WT2100DEU9 - Station WT21, LEICA receiver, LB2 data stream
- WT2101DEU0 - Station WT21, JAVAD receiver, RTCM data stream
- WT2101DEU9 - Station WT21, JAVAD receiver, SBF data stream
III. Naming Conventions for IGS Real-Time Data Streams

- 10-character Navigation or Product Data Stream "TTTTXXAAAxF", where
 - **TTTT**: stream type (SSRA, SSRC, IONO, BCEP, etc.)
 - **XX**: two-digit solution ID
 - **AAA**: three-letter agency code
 - **F**: one digit format ID (0: RTCM3, 1: SAPA, 2-9: reserved)

- Stream types **TTTT** could be as follows:
 - SSRA/SSRC: state space correction streams, referring to APC/CoM
 - DCBS: state space correction stream (DCBs only)
 - IONO: ionospheric correction stream
 - TROP: tropospheric correction stream
 - BCEP: broadcast navigation data (ephemeris) stream

Example: **BCEP00BKG0** - global broadcast ephemerides from BKG
IV. To Do / Open Issues

- **IGS**
 - Broadcaster guidelines
 - SSR Task Force: Publication of the new IGS SSR Format v1.0 (October 05, 2020)

- **SIRGAS**
 - At least one IGS reference station in each country
 - Experimental SIRGAS regional caster becoming operational

- **General**
 - Implementation of open SSR corrections within hardware (receivers)
Thank you for your kind attention!

Bundesamt für Kartographie und Geodäsie
Organisationseinheit
Richard-Strauss-Allee 11
60598 Frankfurt am Main

Vortragende(r)
vorname.name@bkg.bund.de
www.bkg.bund.de
Phone +49 69 6333 - 1