

GGOS Bureau of Networks and Observations

Mike Pearlman Carey Noll

Implementation of the GGRF in Latin America Buenos Aires, Argentina

September 19, 2019

GGOS Bureau of Networks and Observations

- Provide a forum for the Services to meet, update each other, discuss progress and issues;
- Advocate for the expansion and upgrade of the space geodesy network for the maintenance and improvement of the reference frame and other GGOS priorities;
- Encourage partnerships to build and upgrade ground stations;
- Scope the network for the Reference Frame;
- Maintain a Site Requirements Document;
- Monitor network status; projected network evolution based on input from current and expected future participants, estimate performance capability 5 and 10 years ahead;
- Simulation studies and analyses to assess impact on reference frame products of: network configuration, system performance, technique and technology mix, co-location conditions, site ties, and network trade of options (PLATO);
- Metadata System development for a wide range of users including GGOS; near term strategy for data products (Carey Noll at GSFC) and a more comprehensive longer-term plan for an all-inclusive system (Nick Brown at GA) (Committee on Data and Information);
- Provide the opportunity for representatives from the Services and the Standing Committees to meet and share progress and plans; discuss issues of common interest; meetings at EGU, AGU, GGOS Days, etc.;
- Talks and posters on the Bureau at EGU, AGU, JPGU-AGU, AOGS meetings, etc.;
- Letters/documentation to support stations, current/ new missions, and analysis centers;

Observing System

IUGG

GGOS Organization

GGOS Organization

Space Geodesy Provides a Suite of Ground-based Metric Tools for Studying the Dynamics of the Earth System

Main Thrust is the Reference Frame

Early Simulation Studies to Scope the Network (impact on the Reference Frame) (Erricos Pavlis)

- Early simulation studies showed the we needed:
 - ~32 globally distributed, well positioned, <u>new technology</u>, colocation sites will be required to define and maintain the reference frame;
 - ~16 of these co-location stations must track GNSS satellites with SLR to calibrate the GNSS orbits which are used to distribute the reference frame.

- Design Initiative, a major challenge
- Will require time, significant resources, and strong international participation
- Not enough good sites
- Now we recognize that it will be a combination of core and colocation sites with global distribution.

Co-location in Space

Global Network Supporting GGOS

Current and Projected Core Sites

September 19, 2019

Implementation of the GGRF in Latin America | Buenos Aires, Argentina

Projected Space Geodesy Network

IUGG

Global Geodetic

GGOS Site Requirements Document

Global Geodetic Observing System (GGOS)

GGOS Requirements for Core Sites (Revision 2)

Contributors:

Graham Appleby	NERC
Dirk Behrend	NASA GSFC
Sten Bergstrand	SP
loward Donovan	HTSI
Curtis Emerson	NASA GSFC
aime Esper	NASA/GSFC
layo Hase	AGGO BKG
im Long	NASA GSFC
Chopo Ma	NASA GSFC
David McCormick	NASA GSFC
Carey Noll	NASA GSFC
rricos Pavlis	UMBC
Pascale Ferrage	CNES
lichael Pearlman (Lead)	CfA
erome Saunier	IGN
David Stowers	JPL
Scott Wetzel	HTSI

GGOS Requirements for Core Sites

Revision 2

Introduction and Justification

- What is a Fundamental Station?
- Why do we need the Reference Frame?
- Why do we need a global network?
- What is the current situation?
- What do we need?
- Site Conditions
 - Global consideration for the location
 - Geology
 - Site area
 - Weather and sky conditions
 - Radio frequency and optical Interference
 - Horizon conditions
 - Air traffic and aircraft Protection
 - Communications
 - Land ownership
 - Local ground geodetic networks
 - Site Accessibility
 - Local infrastructure and accmmodations
 - Electric power
 - Site security and safety
 - Local commitment

Site layout needs to recognize the issue of RF interference among the new technology systems

- Examining trade-off options for station deployment and closure, technology upgrades, impact of site ties, etc. and project future network capability using projected network configuration in new system implementation;
- Conducting simulations to assess impact on reference frame products of: network configuration (e.g., new and additional sites), system performance (e.g., SLR station performance), technique and technology mix, co-location conditions, site ties;
- Conducting simulation studies to assess impact on reference frame products of: co-location in space, space ties, available satellites (e.g., tracking priorities for LAGEOS and Etalon);
- Developing improved analysis methods for reference frame products by including all existing data and available co-locations (e.g., consistent processing of LEO and ground-based observations);
- Conducting ongoing analysis campaign with exchanged simulated observations.

Standing Committee on Satellite Missions (CSM)/ J. Müller, R. Pail

- List of satellite contributions to fulfill the GGOS 2020 goals (1 mm / 0.1 mm/yr) has been prepared and will be regularly updated;
- Inventory of the GGOS satellite infrastructure has been prepared and will be regularly updated;
- Both lists are published at the CSM section of the GGOS website;
- ESA's Earth Explorer 10 call: CSM has contributed to proposal MOBILE (future gravity satellite mission) – not selected;
- Exchange with PLATO has been initiated by identifying joint interests and possible collaborations

Standing Committee on Data and Information System/ H. Titz, C. Noll

- Adopting and implementing a metadata system to provide access to GGOS relevant data products (Carey Noll);
- Work continues at CDDIS on collection-level metadata efforts (Carey Noll);
- Developing a full metadata system including site information and relevant tools and capability (Nick Brown/the Australian GL scheme)
 - Definition of the requirements;
 - Resolve issues and applicability of the Australian GL scheme and recommend schema;
 - Metadata implementation plan including definition of tasks, roles, and distribution of tasks, and plans for integration of components.

IERS Working Group on Site Survey and Co-location Tasks/ S. Bergstrand

- Geometric VLBI telescope deformation measurements have been shown to isolate apparent reference point movements that hitherto have been aliased into space geodetic processing at an order of several millimeters;
- High priority to have such measurements done at legacy VLBI telescopes before they are decommissioned to provide the best possible time series for future International Terrestrial Reference frames (ITRFs);
- Starting mid-2019, the GeoMetre Project (18SIB01) has been granted three years European Commission funding in the European Metrology Programme for Innovation and Research (EMPIR) to improve traceable long-distance measurements and local tie research.

Reality

Recognizing that:

- Many sites will not be at ideal locations nor have ideal conditions;
- Some new technology stations are being deployed, but not co-located;
- Core site deployment will occur over many years;
- We will have a mix of new and legacy technologies for many years;
 As a result:
- Co-location sites (non-core sites) will continue to play a vital role in our data products;
- Quality of our output will be the product of network Core Sites, Co-location sites, mix of technologies, adherence to proper operational and engineering procedures, and making best use of the data once it leaves the field;

But:

Many groups are taking the initiative to join, build and upgrade

- Challenging program with very important science and societal benefits
- Technologies are maturing
- Global distribution is essential
- Very large opportunity for participation in analysis, science, and technology areas – just show up and get involved
- Need to engage young scientists, engineers and students
- Success will depend on partnerships