

REPORTE DEL CENTRO DE PROCESAMIENTO IGA 2009-2010

Omar David Bolívar Fonseca.

Grupo Interno de trabajo de Geodesia Instituto Geográfico Agustín Codazzi.

obolivar@igca.gov.co

William Alberto Martínez Díaz. Coordinador Grupo Interno de trabajo de Geodesia Instituto Geográfico Agustín Codazzi.

wamartin@igca.gov.co

Reunión SIRGA 2010 Lima, Perú, noviembre 11 de 2010

Contenido

- 1. Estaciones procesadas por IGA.
- Estrategia de procesamiento implementada en Bernese
- Estadísticas de la observaciones calculadas por el centro de procesamiento de IGA
- 4. Series de tiempo
- Productos desarrollados por IGA en el periodo 2009-2010
- Inconvenientes, conclusiones y perspectivas futuras de IGA

Nombre del Centro de Procesamiento: IGA

Institución que lo apoya: Instituto Geográfico Agustín Codazzi

Persona responsable:

William Alberto Martínez Díaz, wamartin@igac.gov.co

Equipo de trabajo (Nombre, apellido, e-mail)

Omar David Bolívar Fonseca, <u>obolivar@igac.gov.co</u>
Alberto Umbarila Madero, aumbarilqigac.gov.co
Francisco Javier mora torres, <u>fjmora@igac.gov.co</u>

Fecha de inicio de actividades:

Semana 1395 (1 de octubre de 2006) hasta semana 1470 (15 de Marzo de 2008) como centro experimental.

Semana 1471 (16 de marzo de 2008) como centro oficial de procesamiento.

Tareas realizadas: Cálculo semanal libre de la red de densificación SIRGAS-CON-D norte, mediante la generación de ecuaciones normales diarias y archivo sinex semanal. Análisis del comportamiento atmosférico local (ionosfera y troposfera) y cálculo de redes geodésicas locales.

Capacitación recibida: Curso "Apoyo a la transferencia de conocimientos en geodesia y procesamiento de datos GNSS con software científico", realizado en junio de 2006 con el apoyo de Laura Sánchez y Manuela Krügel.

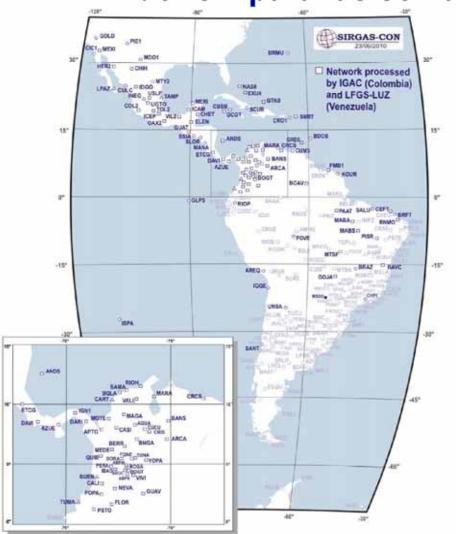
Resultados:

Generación y entrega oportuna de las soluciones semanales de las estaciones pertenecientes a la red SIRGAS-CON-D norte en el 99%.

Evaluación diaria de la consistencia de las coordenadas a través de la determinación de la repetibilidad de los datos de cada estación, alcanzándose en promedio valores para la componente N= 1,98 mm, E= 1,99 mm y U=5,66 mm.

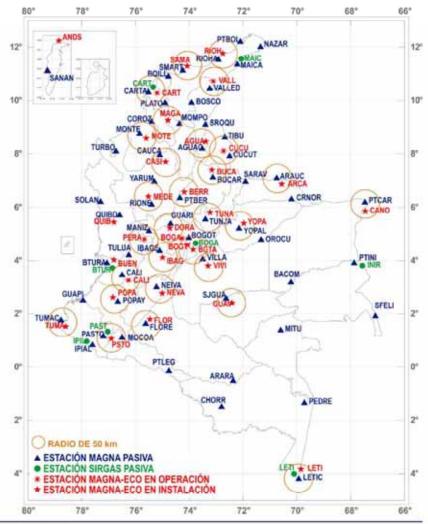
Elaboración y análisis de las series de tiempo de las estaciones procesadas por IGA.

Determinación de los residuales de la series de tiempo entre las soluciones libre proporcionadas por IGA y las soluciones fijas de SIR.


Comparación de las soluciones semanales libre generadas en IGA con las soluciones de los centros de procesamiento de LUZ en Venezuela, ECU en el Ecuador y la combinación semanal de la red global del IGS.

Estaciones procesadas por el centro de procesamiento de IGA para las semanas 1539 a 1600

- 83 estaciones procesadas semanalmente aprox.
- 25 Estaciones de IGS y NOOA
- 25 Estaciones de México
- 22 Estaciones de Colombia
- 13 Estaciones de Brasil
- 5 Estaciones de Venezuela
- 4 Estacione de Panamá
- 2 Estaciones de Isla Caimán
- 1 Estación en Costa Rica


Marco Geocéntrico Nacional de Referencia para Colombia MAGNA-SIRGAS

60 Estaciones pasivas principales

20 Estaciones de funcionamiento continuo en operación

12 estaciones de funcionamiento continuo en proceso de conexión

3200 Puntos pasivos de densificación

Estaciones procesadas por centro de procesamiento del IGA para la semana 1600

No	ESTACIÓN	DOMES	RECEPTOR	ANTENA	
1	ABCC	41939M001	LEICA GRX1200	LEIAT504GG LEIS	
2	ABPD	41941M001	LEICA GRX1200	LEIAT504GG LEIS	
3	ABPW	41940M001	LEICA GRX1200	LEIAT303 LEIC	
4	ARCA	419095001	TPS GB-1000	TPSCR4 CONE	
5	AREQ	42202M005	ASHTECH UZ-12	AOAD/M_T JPLA	
6	BAVC	41669M001	TRIMBLE NETRS	TRM55971.00 NONE	
7	BERR	419105001	TPS GB-1000	TPSCR4 CONE	
8	BNGA	41911M001	LEICA GRX1200	LEIATSO4 LEIS	
9	BOAV	41636M001	TRIMBLE NETR5	TRM55971.00 NONE	
10	BOGA	41901M002	LEICA GRX1200	LEIAT504 NONE	
11	BOGT	41901M001	ASHTECH UZ-12	ASH701945E_M NONE	
12	BRAZ	41606M001	TRIMBLE NETRS	TRM41249.00 NONE	
13	BRFT	41602M002	LEICA GRX1200PRO	LEIAT504 NONE	
14	BRMU	425015004	LEICA GRX1200GGPRO	TRM29659.00 UNAV	
15	BUEN	419125001	TPS GB-1000	TPSCR4 CONE	
16	CALI	419035001	TPS GB-1000	TPSCR4 CONE	
17	CBSB	80402M001	TRIMBLE NETRS	TRM41249.00 NONE	
18	CEFT	41682M001	TRIMBLE 4000SSI	TRM29659.00 NONE	
19	CHET	40526M001	TRIMBLE 5700	TRM41249.00 NONE	
20	CHIH	40525M001	TRIMBLE 5700	TRM41249.00 NONE	
21	CHPI	41609M003	ASHTECH UZ-12	ASH701945C M NONE	
22	COL2	40524M001	TRIMBLE 5700	TRM41249.00 NONE	
23	CRCS	42401M001	SOK GSR2700 RS	TRM29659.00 NONE	
24	CRO1	43201M001	ASHTECH UZ-12	ASH701945G_M_JPLA	
25	cucu	419045001	TPS LEGACY	TPSCR4 CONE	
26	CULC	40529M001	TRIMBLE 5700	TRM41249.00 NONE	
27	DORA	419155001	TPS GB-1000	TPSCR4 CONE	
28	ETCG	40602M001	TRIMBLE 5700	TRM41249.00 NONE	
29	FLOR	419165001	TPS GB-1000	TPSCR4 CONE	
30	GCGT	80401M001	TRIMBLE NETR5	TRM57971.00 NONE	
31	GLPS	42005M002	ASHTECH UZ-12	ASH7019458_M SCIT	
32	GOJA	41654M001	TRIMBLE NETR5	TRM55971.00 NONE	
33	GOLD	404055031	ASHTECH Z-XII3	AOAD/M_T NONE	
34	GUAT	409015001	LEICA GRX1200PRO	TRM29659.00 UNAV	
35	HER2	40522M001	TRIMBLE 5700	TRM41249.00 NONE	
36	ICAM	40514M002	TRIMBLE 5700	TRM41249.00 NONE	
37	ICEP	40531M001	ASHTECH Z-XII3	ASH700228D NONE	
38	IDGO	40532M001	ASHTECH Z-XII3	ASH700228D NONE	
	IGN1	41303M001	TPS GB-1000	TPSCR4 CONE	

No	ESTACIÓN	DOMES	RECEPTOR	ANTENA
40	INEG	40507M001	TRIMBLE 5700	TRM29659.00 NONE
41	IQQE	417085002	TRIMBLE NETRS	ASH700936D_M SNOW
42	KOUR	97301M210	JPS LEGACY	ASH701946.3 NONE
43	LPAZ	40521M001	TRIMBLE 5700	TRM41249.00 NONE
44	MABA	41642M001	TRIMBLE NETRS	TRM55971.00 NONE
45	MABS	41681M001	TRIMBLE NETRS	TRM55971.00 NONE
46	MANA	412015001	TRIMBLE 4000SSI	TRM29659.00 UNAV
47	MARA	42402M001	SOK GSR2700 RS	NOV533+CR NOVC
48	MDO1	40442M012	ASHTECH UZ-12	AOAD/M_T JPLA
49	MEDE	419215001	TPS GB-1000	TPSCR4 CONE
50	MERI	40520M001	TRIMBLE 5700	TRM41249.00 NONE
51	MEXI	40519M001	TRIMBLE 5700	TRM41249.00 NONE
52	MSDO	41672M001	TRIMBLE NETRS	TRM55971.00 NONE
53	MTSF	41655M001	TRIMBLE NETRS	TRM55971.00 NONE
54	MTY2	40518M001	TRIMBLE 5700	TRM41249.00 NONE
55	NAS0	436075001	TRIMBLE NETRS	TRM41249.00 NONE
56	OAX2	40517M001	TRIMBLE 5700	TRM41249.00 NONE
57	PAAT	41683M001	TRIMBLE NETR5	TRM55971.00 NONE
58	PERA	419055001	TPS LEGACY	TPSCR4 CONE
59	PIE1	40456M001	ASHTECH UZ-12	ASH701945E_M NONE
60	PISR	41673M001	TRIMBLE NETRS	TRM55971.00 NONE
61	PMB1	437025001	TRIMBLE NETRS	TRM55971.00 NONE
62	POVE	41628M001	TRIMBLE NETRS	TRM29659.00 NONE
63	PSTO	419255001	LEICA GRX1200	LEIAT504 LEIS
64	RIOP	42006M001	TRIMBLE NETRS	TRM41249.00 NONE
65	RNMO	41664M001	TRIMBLE NETRS	TRM55971.00 NONE
66	SALU	41640M001	TRIMBLE NETRS	TRM55971.00 NONE
67	SAMA	419285001	TPS GB-1000	TPSCR4 CONE
68	SANT	41705M003	ASHTECH UZ-12	AOAD/M_T JPLA
69	SCUB	40701M001	ASHTECH Z-XII3	ASH700936C_M SNOW
70	SMRT	431025001	TRIMBLE NETRS	TRM41249.00 NONE
71	TAMP	40516M001	TRIMBLE 5700	TRM41249.00 NONE
72	TOL2	40515M001	TRIMBLE 5700	TRM41249.00 NONE
73	TUNA	419305001	TPS GB-1000	TPSCR4 CONE
74	UGTO	40528M001	TRIMBLE 5700	TRM41249.00 NONE
75	UNSA	41514M001	SEPT POLARX2	TPSCR3_GGD NONE
76	USLP	40530M001	ASHTECH Z-XII3	ASH700228D NONE
77	VALL	419065001	TPS LEGACY	TPSCR4 CONE
78	VIL2	40527M001	TRIMBLE 5700	TRM41249.00 NONE

Estaciones nuevas y excluidas del centro de procesamiento del IGA para las semanas 1539 a 1600

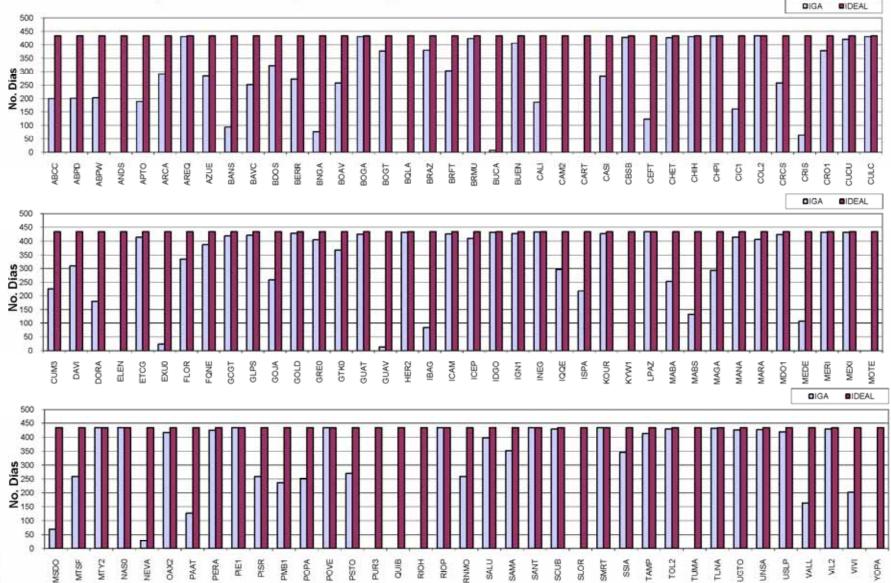
No	ESTACIÓN	PAIS	FECHA INCORPORACIÓN SIRGAS	SEMANA GPS
1	ABCC	Colombia	21 de Febrero de 2010	1572
2	ABPD	Colombia	21 de Febrero de 2010	1572
3	ABPW	Colombia	21 de Febrero de 2010	1572
4	BAVC	Brasil	26 de Julio de 2009	1542
5	BNGA	Colombia	11 de Julio de 2010	1589
6	CASI	Colombia	4 de Enero de 2009	1513
7	CEFT	Brasil	2 de Mayo de 2010	1582
8	ICEP	México	28 de Junio de 2009	1538
9	MABS	Brasil	25 de Abril de 2010	1582
10	MSDO	Brasil	12 de Julio de 2009	1540
11	PAAT	Brasil	25 de Abril de 2010	1582
12	PISR	Brasil	12 de Julio de 2009	1540
13	RNMO	Brasil	1 de Febrero de 2009	1517

Estrategia de procesamiento (I)

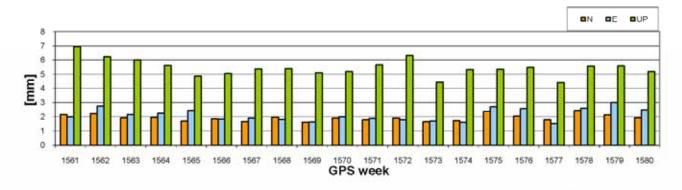
Los parámetros empleados por el centro de procesamiento IGA para el cálculo semanal de las coordenadas de las estaciones de la red SIRGAS-CON, son :

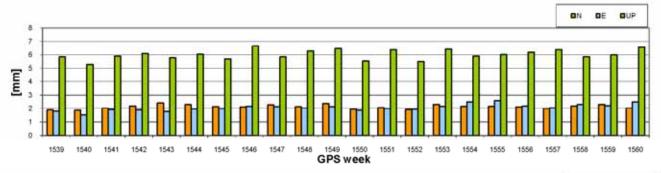
- La máscara de elevación y el intervalo de muestreo de las observaciones se han definido en 3°y 30 seg respect ivamente.
- Se emplean variaciones para los centros de fase y offsets de las antenas GNSS absolutos definidos por IGS (http://www.ngs.noaa.gov/ANTCAL/images/ant_info.html).
- Uso de las soluciones semanales del IGS para la corrección de los relojes, definición de los parámetros de orientación terrestre y las órbitas satelitales precisas (ftp://cddis.gsfc.nasa.gov/pub/gps/products/).
- Aplicación de la estrategia quasi-ionosphere free (QIF) para la solución de ambigüedades.

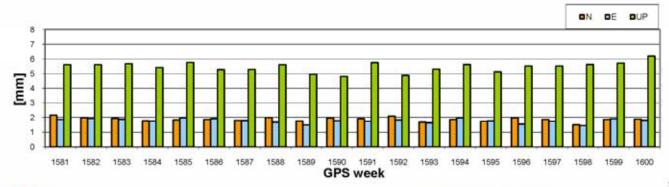
Estrategia de procesamiento (II)


- Los modelos ionosféricos a-priori utilizados corresponden con los modelos diarios globales generados por el centro de análisis de la universidad de Berna (ftp://ftp.unibe.ch/aiub/CODE/)
- Los movimientos periódicos causados por la carga oceánica son reducidos de acuerdo con el modelo de mareas oceánicas FES2004 (http://129.16.208.24/~loading).
- El modelamiento troposférico (componente húmeda) se calcula cada dos horas, utilizando la función de mapeo de Niell (1996) y RMS a priori de 5m para el valor absoluto y 5cm para valores relativos.
- Las coordenadas iníciales de las estaciones tienen sigma a-priori de 1m para garantizar que las observaciones son libres del Datum tanto en las soluciones diarias, como en la semanal.

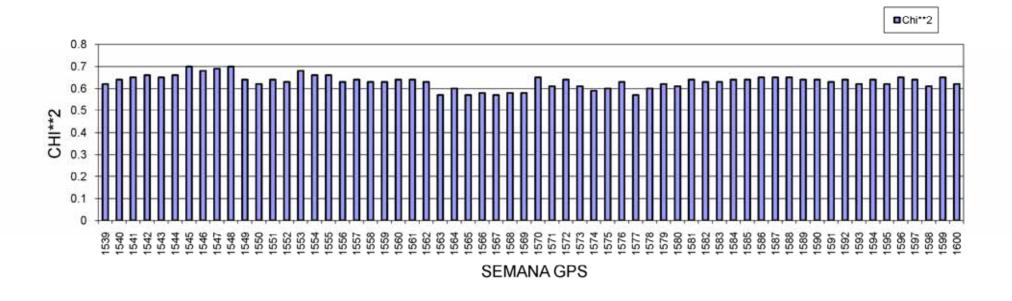
Disponibilidad de los datos de observación de las estaciones procesadas por IGA para las semanas GPS 1539 a 1600



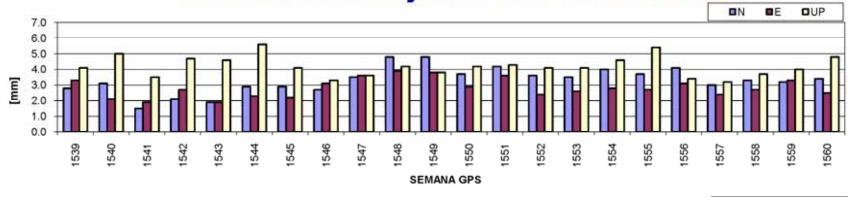


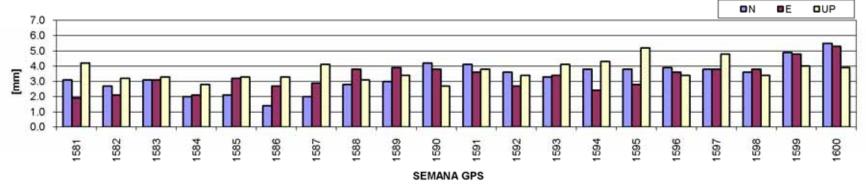


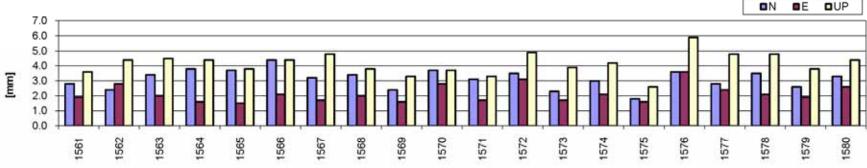
Valores semanales medios de las repetibilidades para las componentes N, E y UP


La evaluación diaria de la repetibilidad de las coordenadas diarias de las estaciones procesadas por IGA, nos muestra alta consistencia en la componentes N y E (N=1,98 mm E= 1,99 mm), mientras que esta disminuye para la componente U=5,66 mm

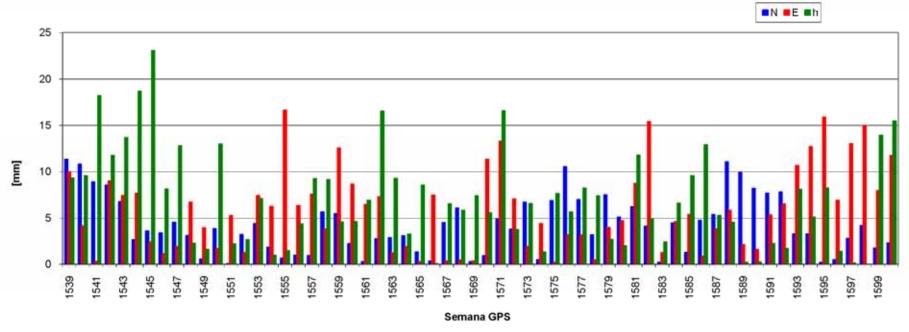
Promedio semanal del CHI² en las soluciones semanales libres del centro de procesamiento del IGA para las semanas GPS 1539 a 1600


El valor medio de la prueba de distribución chi-cuadrado para el intervalo de datos entre 1539 y 1600 es de 0.63

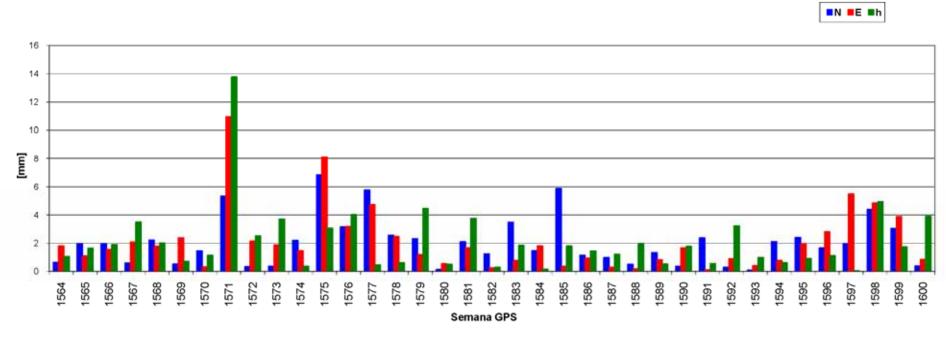




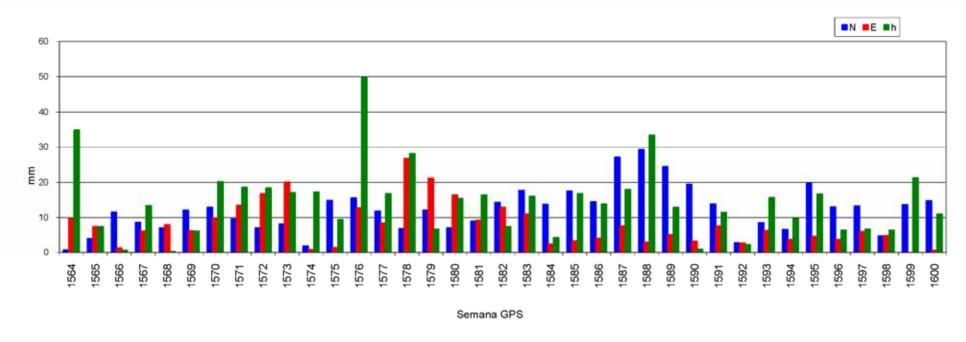
Residuales de las soluciones libres de IGA con respecto a las soluciones fijas de IGS-RNAAC-SIR



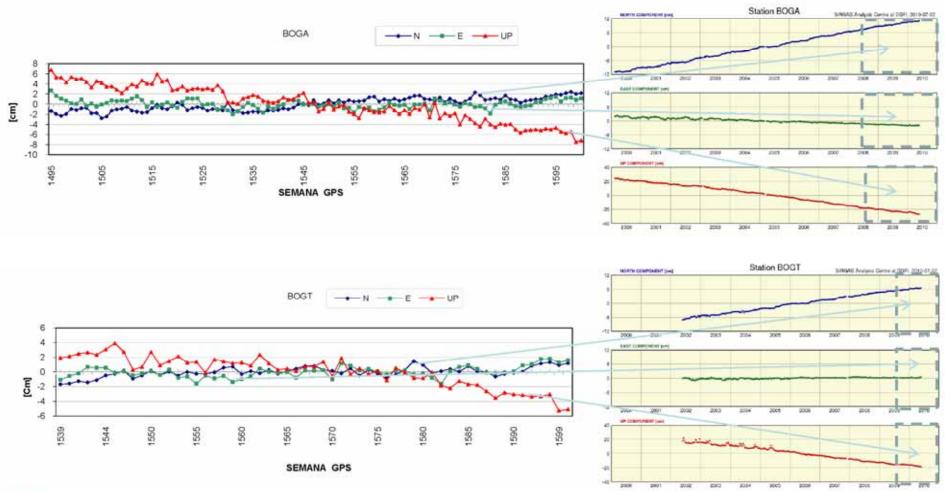
Comparación de los residuales de las soluciones semanales obtenidas entre los centros de procesamiento de IGA y IGS-RNAAC-SIR


Los valores promedio de los residuales entre las soluciones libres de IGA con relación a IGS-RNAAC-SIR durante las semanas GPS 1539 y 1600 varían en la componente N=4.22 mm, E=5.93 mm y UP=7.02 mm

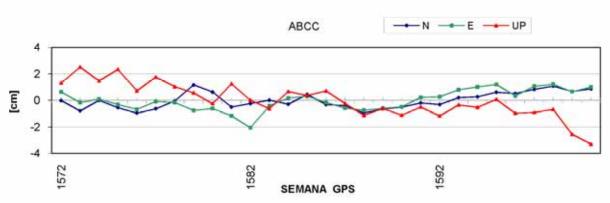
Comparación de los residuales de las soluciones semanales obtenidas entre los centros de procesamiento de IGA y LUZ

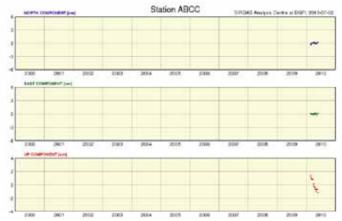

Los valores promedio de los residuales entre las soluciones libres de IGA con relación a LUZ para el periodo comprendido entre las semanas GPS 1539 y 1600 varían en la componente N=2.04 mm, E=2.12 mm y U=2.11 mm

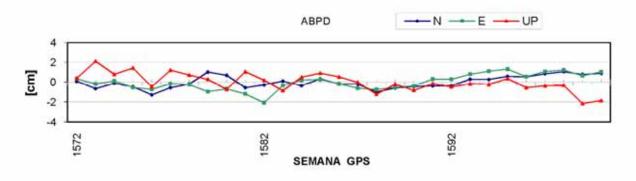
Comparación de los residuales de las soluciones semanales obtenidas entre los centros de procesamiento de IGA y ECU


Las variaciones de los valores promedio de los residuales entre las soluciones libres de IGA con relación a ECU, para el periodo comprendido entre las semanas GPS 1539 y 1600, son N=12.12 mm, E=7.76 mm y UP=14.22 mm

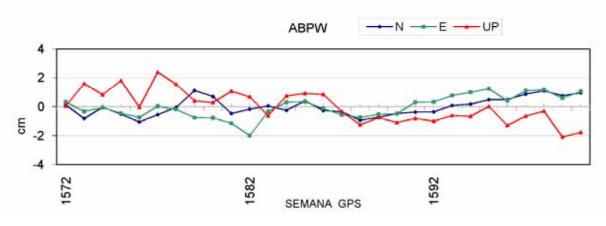
Series de tiempo de las estaciones SIRGAS-CON procesadas por el IGA entre las semanas GPS 1539 a 1600 (I)

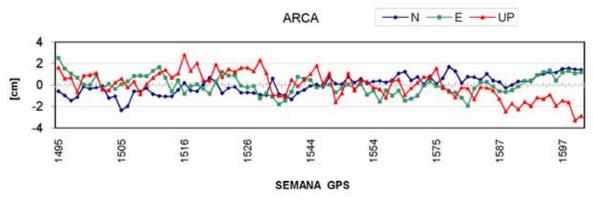




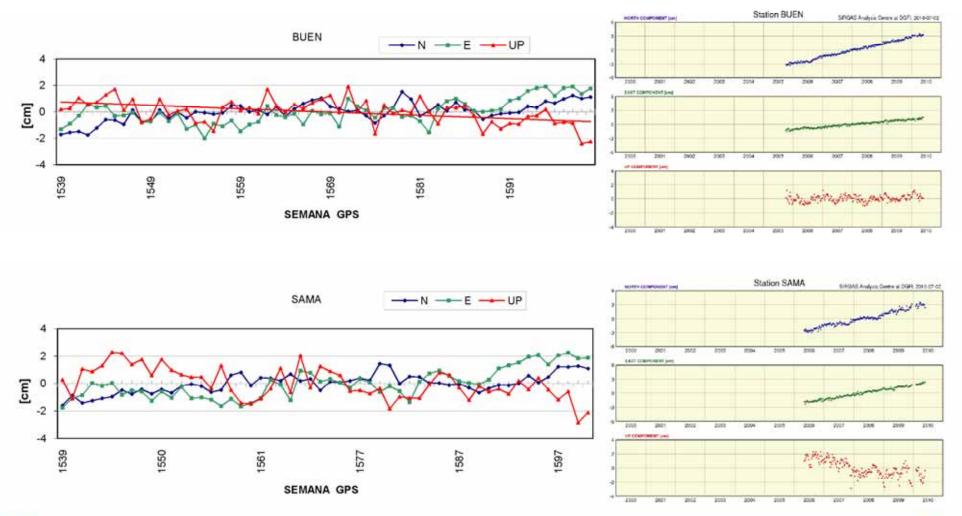


Series de tiempo de las estaciones SIRGAS-CON procesadas por el IGA entre las semanas GPS 1539 a 1600 (II)

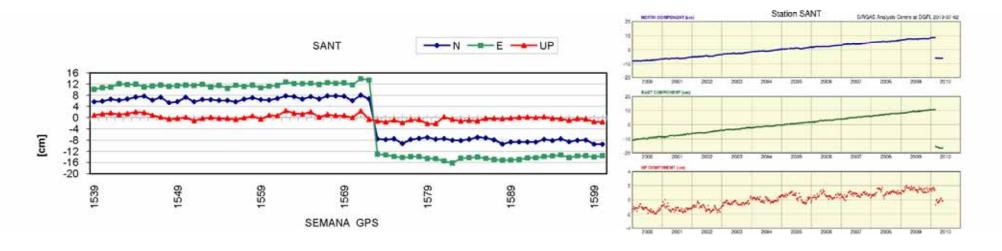


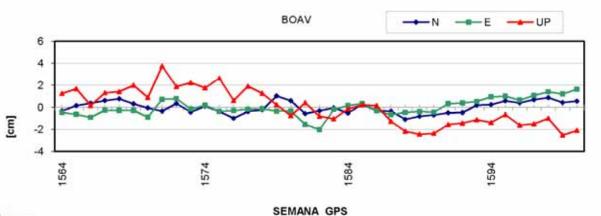


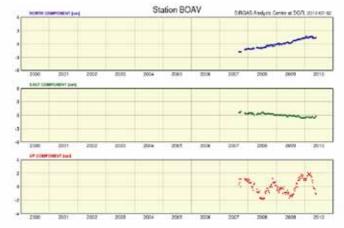
Series de tiempo de las estaciones SIRGAS-CON procesadas por el IGA entre las semanas GPS 1539 a 1600 (III)



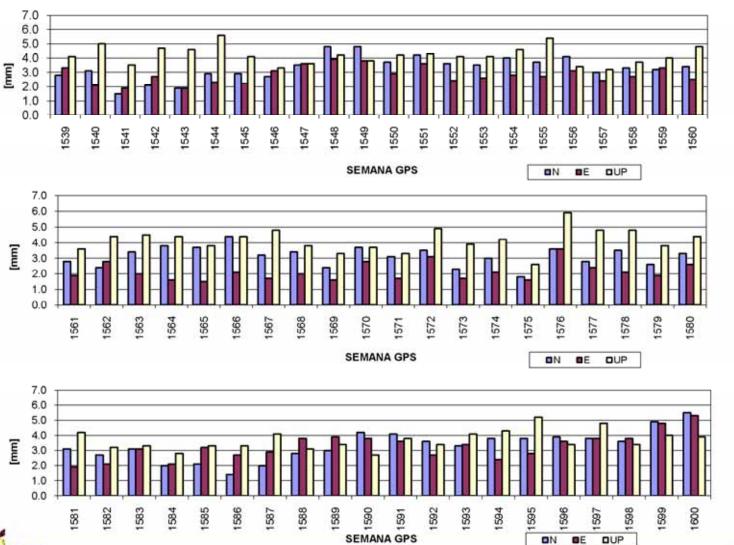
Series de tiempo de las estaciones SIRGAS-CON procesadas por el IGA entre las semanas GPS 1539 a 1600 (IV)







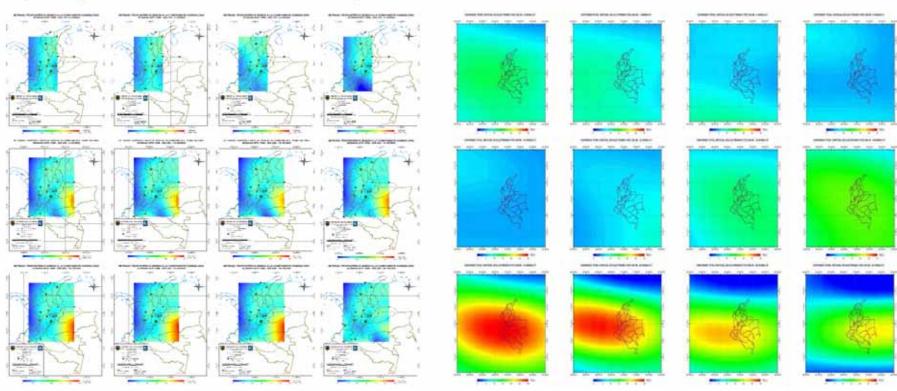
Series de tiempo de las estaciones SIRGAS-CON procesadas por el IGA entre las semanas GPS 1539 a 1600 (V)



SIRGAS

Residuales de las series de tiempo entre las soluciones libres de IGA y las soluciones fijas de IGS-RNAAC-SIR

valores de Los **RMS** para las soluciones libre generadas por IGA con relación a las soluciones de IGS-RNAAC-SIR varían la componente norte en promedio la para mm, componente este es de 6.7 mm y la componente vertical de 7.3 mm



Productos desarrollados en el centro de procesamiento de IGA

Modelamiento troposférico (componente Húmeda ZWD)

Modelamiento Ionosferico

Inconvenientes presentados con el centro de procesamiento de IGA durante el periodo del 2009 - 2010

- Cambio de las personas encargadas del centro de procesamiento de IGAC.
- Dificultades con el hardware utilizado para realizar el proceso de cálculo.
- 3. Actualización de la versión del software del Bernese
- Perdida de estaciones continuas pertenecientes al IGAC debido a daños físicos de los equipos GNSS.
- 5. Problemas de comunicación para la transmisión de los datos de observación de las estaciones de la red MAGNA-ECO.
- 6. Inconvenientes con los tiempos de descarga de los archivos de observación de los centros de procesamiento.

Conclusiones y perspectivas futuras de IGA

- Desarrollar algoritmos más eficientes y de fácil manejo para la descarga de datos de observación de los diversos centros de datos de SIRGAS.
- 2. Mejorar el proceso de generación de mapas ionosféricos y troposféricos (Rutinas de programación y de mapeo con software libre).
- Modernización de los equipos GNSS que conforman la red MAGNA-ECO.
- Implementar nuevas soluciones de comunicación para mejorar la transferencia de datos de las estaciones pertenecientes a la red MAGNA-ECO
- Capacitación de personal dentro del IGAC para consolidar los grupos de trabajo de modelamiento de las variables atmosféricas a partir de datos GNSS.
- Modernización del equipo del computo y de almacenamiento de la información en el cual se realiza el procesamiento semanal de IGA y la generación de copias de respaldo de las soluciones.

Direcciones de acceso a los datos de observación de las estaciones procesadas en IGA

BRASIL

Acceso FTP

Servidor: ftp://geoftp.ibge.gov.br/RBMC/dados

CAIMAN

Acceso FTP

Servidor:www.ngs.noaa.gov/cors/rinex/2010

COSTA RICA

http://www.etcq-qps.una.ac.cr/

http://www.etcg-gps.una.ac.cr/index.php?option=com_wrapper&Itemid=6

COLOMBIA

Acceso FTP

Servidor:190.254.22.42

IGS

Acceso FTP

Servidor:cddis.gsfc.nasa.gov/gps/data/daily/2010 Acceso FTP

MEXICO

Acceso FTP

Servidor:geodesia.inegi.gob.mx

NOOA

Acceso FTP

Servidor: www.ngs.noaa.gov/cors/rinex/2010

PANAMA

Acceso FTP

Servidor: 201.218.242.20

UNAVCO

Acceso FTP

Servidor:data-out.unavco.org/pub/rinex/obs/2010

VENEZUELA

Servidor: ftp.lgfs.luz.edu.ve

