Avances en la modelización de las variaciones no lineales en la componente vertical de estaciones SIRGAS-CON causadas por fenómenos de carga

Romina Galván,

Mauricio Gende & Claudio Brunini

Facultad de Ciencias Astronómicas y Geofísicas - UNLP Grupo GESA, Argentina CONICET

Facultad de Ciencias Astronómicas y Geofísicas

Reunión SIRGAS, Chile, 2012

Contenidos

1 Problemas actuales de los marcos de referencia

2 Objetivos

- 3 Fuentes de información
- Modelado analítico
- **5** Resultados

Problemas actuales de los marcos de referencia

En cuanto a la determinación cinématica de los marcos de referencia utilizando soluciones multianuales acumuladas:

- El cálculo de velocidades constantes (movimientos lineales de las estaciones) es insuficiente para representar la cinemática real del marco de referencia. Se requiere del análisis y modelado de los movimientos no lineales (Cinemática del marco de referencia SIRGAS, Reunión 2011, Sanchez L. et al.).
- La realización de los marcos de referencia por coordenadas de época y velocidades constantes no es adecuado. Se debe buscar un método alternativo (Los servicios científicos de la IAG y el marco de referencia ITRF, Reunión 2011, Drewes, H.).

Causas de las variaciones temporales periódicas no lineales de las coordenadas

- Variaciones temporales estacionales por efectos climáticos (deformaciones por carga atmosférica e hidrológica),
- Variaciones de períodos largos por efectos hidrológicos (sequedad, variación del agua subterránea)
- Variaciones a largo plazo, por ej. por efectos hidrológicos (carga, extracción de agua o petróleo, etc.),
- ¡los cambios lineales de las coordenadas no son verdaderos!

Objetivos

Mejorar la modelización de las deformaciones verticales de la corteza terrestre en respuesta a las variaciones temporales estacionales de la carga superficial.

Fuentes de Información

- Series temporales de soluciones semanales de coordenadas SIRGAS, en particular la componente vertical para caracterizar las variaciones temporales de la superficie terrestre.
- Grillas globales de altura de agua equivalente obtenidas por la misión satelital GRACE para caracterizar las variaciones temporales de la carga superficial.

Series temporales de soluciones semanales de coordenadas SIRGAS

Estación NAUS

Ejemplos de variaciones temporales periódicas no lineales

Misión satelital GRACE

- 1. Misión desarrollada por la NASA, utiliza 2 satélites idénticos situados en la misma órbita, separados 220 km. entre sí.
- Los cambios de gravedad terrestre ejercen una atracción sobre ellos a medida que se van desplazando y se mide con extremada precisión la distancia relativa entre ellos.
- 3. Se obtiene un mapa mensual global del campo de gravedad terrestre.
- 4. Se observan fenómenos de transporte de masa.

Alturas de agua equivalente globales

Comparación de ambas señales suavizadas

Carga y Desplazamiento para NAUS

Correlaciones entre desplazamientos verticales y carga de agua

$$\mathsf{Deformación}(x,t) = \int F(\psi_{P,Q}) m(x,t) dm$$

F(ψ_{P,Q}) tiene que ver con las características corticales
m(*x*, *t*) tiene que ver con la carga que afecta la región

(1)

$$\mathsf{Deformación}(x,t) = \int \mathsf{F}(\psi_{\mathsf{P},\mathsf{Q}})\mathsf{m}(x,t)\mathsf{d}\mathsf{m}$$

F(ψ_{P,Q}) tiene que ver con las características corticales
m(x, t) tiene que ver con la carga que afecta la región

(1)

$$F(\psi_{P,Q}) = 10^{-17} * a * \exp(-b * \psi_{P,Q})$$
 (6)

¿Qué significado tienen los parámetros a y b?

a proporciona una medida del desplazamiento vertical con el que respondería una celda vertical de un metro cuadrado de superficie de la corteza terrestre, bajo una carga de 1 kg.

Sirgas, 2012

2)

$$F(\psi_{P,Q}) = 10^{-17} * a * \exp(-b * \psi_{P,Q})$$

¿Qué significado tienen los parámetros a y b?

b determina la rapidez con que decae la influencia que ejercen las celdas aledañas a aquella en que se calcula la deformación, y está asociado con la densidad promedio de las masas corticales.

Sirgas, 2012

(2)

$$d(P_i) = 10^{-17} * \sum_{k/\psi < R} q_{Q_k} * A_{Q_k} * [\mathbf{a}_{i,k} * \exp(-\mathbf{b}_{i,k} * \psi_{P_i,Q_k})]$$
(3)

$$d(P_i) = 10^{-17} * \sum_{k/\psi < R} q_{Q_k} * A_{Q_k} * [\mathbf{a}_{i,k} * \exp(-\mathbf{b}_{i,k} * \psi_{P_i,Q_k})]$$
(3)

$$d(P_i) = 10^{-17} * \sum_{k/\psi < R} q_{Q_k} * A_{Q_k} * [\mathbf{a}_{i,k} * \exp(-\mathbf{b}_{i,k} * \psi_{P_i,Q_k})]$$
(3)

$$d(P_i) = 10^{-17} * \sum_{k/\psi < R} q_{Q_k} * A_{Q_k} * [\mathbf{a}_{i,k} * \exp(-\mathbf{b}_{i,k} * \psi_{P_i,Q_k})]$$
(3)

$$d(P_i) = 10^{-17} * \sum_{k/\psi < R} q_{Q_k} * A_{Q_k} * [\mathbf{a}_{i,k} * \exp(-\mathbf{b}_{i,k} * \psi_{P_i,Q_k})]$$
(3)

$$d(P_i) = 10^{-17} * \sum_{k/\psi < R} q_{Q_k} * A_{Q_k} * [\mathbf{a}_{i,k} * \exp(-\mathbf{b}_{i,k} * \psi_{P_i,Q_k})]$$
(3)

Desplazamiento vertical observado en NAUS

Comparación con función matemática pura

Comparación con función modelada

Desplazamiento vertical observado en BOAV

Comparación con función matemática pura

Comparación con función modelada

🕩 siguiente

🕩 siguiente

Comparación con función modelada

estaciones

Sirgas, 2012

Resultados

Resumen y conclusiones I

- Se propuso modelar las variaciones estacionales no lineales de las coordenadas a través de una función paramétrica dependiente de las características corticales de la región de estudio y de la carga superficial.
- Como fuente de datos se contó con las variaciones en la componente vertical de estaciones de la red SIRGAS-CON y grillas globales de carga superficial de la misión GRACE.
- Se eligieron, para un primer estudio, estaciones SIRGAS que no tuvieran saltos episódicos y cuya correlación con la señal de carga fuera inferior a -0.9, esto es, que estuvieran altamente anticorrelacionadas.
- El modelado obtenido se comparó con el ajuste de una función armónica simple estacional.

Resumen y conclusiones II

- Para el caso de estaciones con un comportamiento armónico fuerte, los resultados obtenidos fueron similares a los logrados con una función armónica.
- Para estaciones con un comportamiento no armónico se logró mejorar visiblemente el modelado.
- Los desvíos estándard obtenidos son iguales o mejores que los hallados por el uso de una función armónica simple para el 100 % de las estaciones estudiadas.

Referencias

Coordenadas semanales y velocidades, ©SIRGAS

Grillas globales de altura de agua equivalente, ©GRGS

- Bruinsma, S., Lemoine, J.M., Biancale, R., et al.: 2010, CNES/GRGS 10-day gravity field models (release 02) and their evaluation. Vol 45, pp. 587-601, Adv. Space Res.

Seitz, F. y Krügel, M.: 2009, en Drewes, H. (eds.), Inverse model approach for vertical load deformations in consideration of crustal inhomogeneities, Vol. 134 en IAG Symposia, pp 23-29, Springer