Towards a Vertical Datum Standardisation

Laura Sánchez

on behalf of

Vertical Datum Standardisation

Joint Working Group JWG 0.1.1 of

GGOS Theme 1: Unified Global Height System IAG Commission 1: Reference Frames IAG Commission 2: Gravity Field International Gravity Field Service

SIRGAS annual meeting 2012. Concepción, Chile. October 31, 2012

Vertical DatumStandardisation

A common initiative of										
GGOS Theme 1: Global Height System		International Gravity Field Service (IGFS)		IAG Commission 2: Gravity Field	IAG C Refei	IAG Commission 1: Reference Frames				
		Initial	mem	bers		1				
L. Sánch R. Čundo Z. Faskov K. Mikul N. Dayov P. Moore Z. Šima		<u>ez</u> (Germany), chair erlík (Slovakia) va (Slovakia) a (Slovakia) ub (Syria) e (United Kingdom) (Czech Republic)		V. Vatrt (Czech Republic) M. Vojtiskova (Czech Republic J. Huang (Canada) D. Roman (USA) Y. Wang (USA) J. Ågren (Sweden)						

Introduction

VERTICAL DATUMSTANDARDISATION

Studying (understanding and modelling) global change requires geodetic reference frames with

- Order of accuracy higher than the magnitude of the effects we want to study;
- Consistency and reliability worldwide;
- Long-term stability.

Definition, realisation, maintenance and **use** of the ITRS/ITRF guarantees a worldwide unified geometric reference frame with reliability in the mm-level.

Physical height systems

Today

- As many reference levels as reference tide gauges;
- Different types of heights (normal, normal-orthometric, orthometric ...);
- Omission of height variations with time;
- Inconsistencies of many [dm] at borders between datum zones;
- Low reliable comparison of height-dependent observables (gravity anomalies, (quasi-)geoid heights, etc.);
- Imprecise [cm ... dm] combination with the geometric reference [h-H-N≠0]

Vertical Datum Standardisation

Consistent height determination

Today

Levelling in combination with gravity reductions

Desired

Disturbing potential in combination with a reference ellipsoid

In the future

Global gravity field models in combination with ITRS/ITRF coordinates

Comparison of clock frequencies of high-precision

$$(U_0,T) = -(U_0 - W_0) + \overline{\gamma}(\varphi)h - T(\varphi,\lambda,h)$$

$$C(C_{nm}, S_{nm}) = W_0 - [V(r, \theta, \lambda) + Z(r, \theta)]$$

 $C(f) = c^2 \left(\frac{f - f_0}{f_0}\right)$

VERTICALDATUMSTANDARDISATION

Reference level depending on input data?

- The same W₀ value for all existing (regional) geoids?
- The same geoid with different (regional) W₀ values?
- Only one geoid with only one W₀ value?

A global vertical reference system

- To solve the discrepancies between the existing height systems and
- To support the different techniques for height determination.

Implicit characteristics:

- One reference level (W₀ or geoid) to be used globally;
- All existing geo-potential numbers (physical heights) referring to one and the same global level;
- Precise combination with geometric heights and geoid models of high resolution, i.e. h-H-N=0.

Strategy

- Selection (Definition and realisation) of a global reference level W₀
 - W₀ = potential of the geoid
 - Geoid = equipotential surface best fitting the global mean sea (Gauss definition)

2. Connection of the individual reference levels with the global W_0

Empirical estimation of W₀

In the 1990s and before:

• Determination of the parameters for a best fitting ellipsoid

 $U_0 = U(a, f, \omega, GM); \text{ or } U_0 = U(a, J_2, \omega, GM)$

Then by definition:

$$W_0 = U_0$$

Late 1990s and 2000s:

$$\int_{S} \Xi^2 ds = \min; \quad \Xi = \frac{W_0 - W_j}{\gamma_j}$$

 Ξ : Sea surface topography

- Points *j* with coordinates from satellite altimetry describe the mean sea surface;
- Potential values W are derived from a global gravity model

Today: solution of the fixed geodetic boundary value problem:

 $\nabla^{2} \delta W(\mathbf{X}) = 0 \qquad \mathbf{X} \in \Omega$ $\delta W(\mathbf{X}) \to 0 \qquad \mathbf{X} \to \infty$ $\delta g(\mathbf{X}) = g(\mathbf{X}) - \gamma(\mathbf{X}) \quad \mathbf{X} \in \Sigma$

Boundary surface Σ known; Unknown: disturbing potential δW (= W_0 - U_0) Boundary condition: gravity disturbances δg Regularisation: δW vanishes at infinity

 $X \leftrightarrow$ sea surface from satellite altimetry, continental surfaces from SMRT $g(X) \leftrightarrow global gravity model$ $\gamma(X), U_0 \leftrightarrow GRS80$

- The reference level W₀ for potential differences can arbitrarily be appointed. However, to get the worldwide consistency desired within a global vertical reference system, the selected W₀ value must be realisable with high-precision at any time and anywhere around the world.
- Since W₀ represents only one quantity and it is not sufficient to estimate position and geometry of the equipotential surface it is defining; the main problem to solve here is not the determination of the W₀ value per se, but its realisation.
- Therefore, it is necessary to estimate it from **real observations** of the Earth's gravity field and surface.
- The uniqueness, reliability and repeatability of the global reference level W₀ (or global geoid) can only be guaranteed by introducing specific conventions (like any other reference system!). On the contrary, there will exist as many height systems as W₀ computations.

A Unified Height System: a GGOS challenge

- Initiated during the IUGG General Assembly in Melbourne, July 2011
- Approved by the IAG Executive Committee in December 2012
- Term: 2011 2015

Objectives

- To bring together all teams working on the computation of W₀ to elaborate an inventory describing individual methodologies, conventions, standards, and models presently applied;
- To implement a new W₀ computation following individual (own) methodologies, but applying the same input geodetic models;
- To make a proposal for a formal IAG/GGOS convention about W₀ supported by a document containing the detailed computation of the recommended value.
- To provide a standard about the usage of W₀ in the vertical datum unification describing an appropriate strategy to connect (unify, transform) any local height system with the global W₀ reference level.

Interaction with other IAG/GGOS components

On going-activities

- L. Sánchez (Germany)
- R. Čunderlík (Slovakia) Z. Faskova (Slovakia) K. Mikula (Slovakia)
- N. Dayoub (Syria) P. Moore (United Kingdom)
- Z. Šima (Czech Republic) V. Vatrt (Czech Republic) M. Vojtiskova (Czech Republic)
- J. Huang (Canada) D. Roman (USA) Y. Wang (USA) J. Ågren (Sweden)

W₀-computation based on fixed-GBVP, Boundary Element
Method (BEM), Finite Element Method (FEM) and Finite Volume Method (FVM).

W₀-computation based on averaging W-values from a GGM
on points describing the sea surface (MSS)
W₀-computation based on a reference ellipsoid (W₀ = U₀)

 W_0 -computation based on averaging W-values from a GGM on points describing the sea surface (MSS)

Vertical Datum Standardisation

First results

The different teams computed W_0 using the same input data, but their own methodologies.

Estimates provided by N. Dayoub

MSS	Domain N/S	GGM	Max degree	W ₀ (m ² s ⁻²)			
				1996.0	2001	2005	
	82°/82°	EIGEN6C		62636854.43		62636854.19	
		GOCO03S		62636854.43		62636854.19	
CLS11	67º/67º	EIGEN6C		62636854.06		62636853.82	
		GOCO03S	<i>n</i> =200	62636854.06		62636853.82	
	82°/82°	EIGEN6C			62636854.11	62636854.00	
DTU10		GOCO03S			62636854.11	62636854.00	
	67º/67º	EIGEN6C			62636853.75	62636853.64	
		GOCO03S			62636853.75	62636853.64	

- W₀-dependence on the latitude coverage.
- W₀-dependence on the reference epoch of the mean sea surface model and potential coefficients.

First results

Estimates provided by R. Čunderlík, Z. Faskova, K. Mikula

ndence on the spectral resolution of the gravity model. Vertical DatumStandardisation

WG on Vertical Datum Standardization

First results Estimates provided by L. Sánchez

First WG meeting GGHS 2012, Venice, Italy, October 11, 2012

One year ago

- Three very close W₀ estimations (~0,2 m²s⁻²): Čunderlik et al., Dayoub et al., Sánchez et al. (computations started in 2005)
- One W₀ estimation far away (~2 m²s⁻²): Burša et al. (computations from 1999 thru 2011 produce the same value)

Today

- Burša et al. estimation came close to the others.
- IERS includes the "old" Burša value, but this value has not been formally adopted or recommended by the IAG (nor IUGG).

What to do? WG members agreed on:

- To recommend a (new) "best present estimate" for W₀ to be included as the reference for a global vertical reference system and be the reference value for time transformation;
- This value will be an agreement between (signed by) the four groups (Čunderlik et al., Dayoub et al., Sánchez et al., Burša et al.)
- This recommendation will be supported by four papers describing models and methods applied in the individual estimations and by a common position paper summarizing the WG agreement.

Planned activities by the individual groups to refine their estimations: (still open questions)

- Combination of a "geodetic" sea surface model and an "oceanographic" DOT-model to reproduce a sea surface closer to an equipotential surface (geoid);
- Integration of polar regions on the Earth's surface representation;
- Differences between W₀ values obtained from a long-term mean sea surface model and yearly mean sea surface models;
- A formal procedure for the error propagation analysis.

More information at <u>http://whs.dgfi.badw.de/</u> or <u>sanchez@dgfi.badw.de</u>

