AVANCES DE SIRGAS EN BOLIVIA SISTEMA GEODESICO NACIONAL

Arturo Echalar ¹, Mario Sandoval ⁵

REUNION DE SIRGAS

Del 21 al 26 de Octubre de 2013

Ciudad de Panamá , Panamá

- 1) Jefe del CEPAG IGM Bolivia
- 2) Jefe de Cálculos IGM Bolivia

SUMARIO

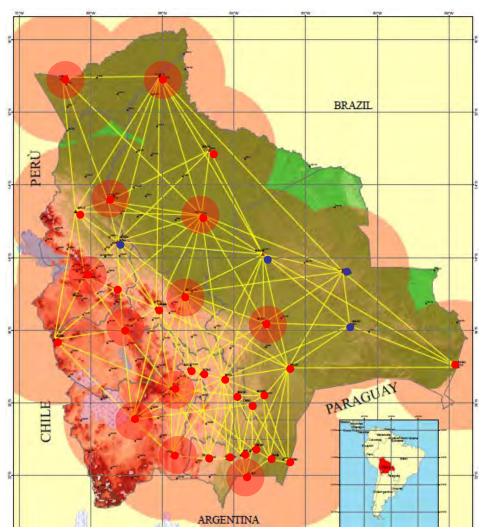
- 1. INTRODUCCION.
- 2. MARGEN SIRGAS.
- 3. RED GRAVIMETRICA NACIONAL.
- 4. RED DE NIVELACION DE PRIMER ORDEN.
- 5. IONOSONDA.
- 6. CEPAG BOLIVIA.
- 7 PROPUESTAS DESAFIOS.
- PROPUESTA REUNION SIRGAS 2014

1. INTRODUCCION.

El Instituto Geográfico Militar de Bolivia ha establecido el Sistema Geodésico Nacional (SGN) con sus componentes: MARGEN, Red de Nivelación Nacional (RNN) y Red Gravimétrica Nacional (RGN).

En el control horizontal la red MARGEN – SIRGAS con sus componentes: Red de Operación Continua (MARGEN-ROC), MARGEN Pasiva "A" y MARGEN Pasiva "D".

En el control vertical la Red de Nivelación Nacional con su única componente: Red de Nivelación de Primer Orden.

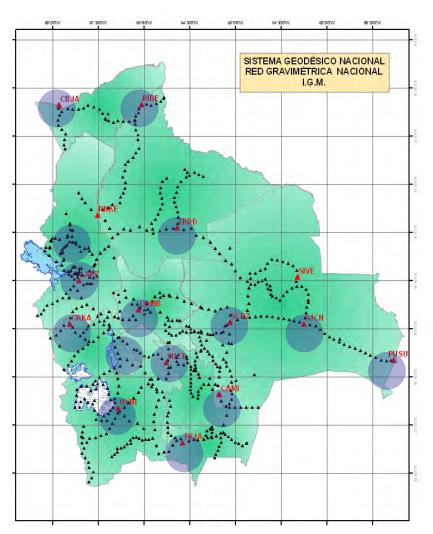

En el control gravimétrico se encuentra: La Red Gravimétrica Absoluta, Red Gravimétrica de Primer Orden y Segundo Orden.

Asimismo, se ha creado el Centro de Procesamiento y Análisis GNSS Bolivia que actualmente esta esperando la respuesta de SIRGAS para constituirse oficialmente como Centro Experimental.

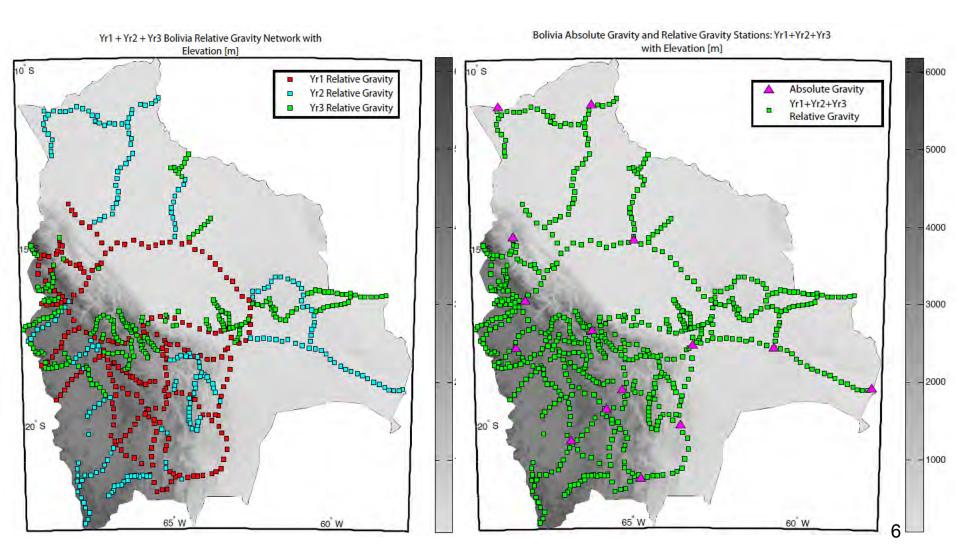
Como tareas complementarias se ha asignado al CEPAG el calculo del TEC en cada estación MARGEN – ROC y el seguimiento de los datos generados por la ionosonda, mismos que se calcularan bajo el apoyo de LISN – IGP.

2. MARGEN - SIRGAS.

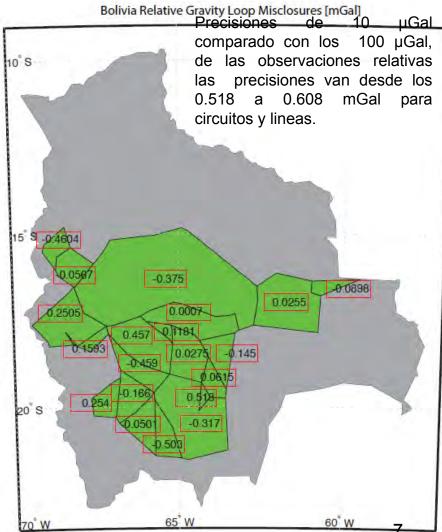
Convenios con: OSU - CAP, HSU at Manoa, LISN (Low lattitude Ionospheric Sensor Network- Boston College) - IGP - DGFI - Escuela Militar de Ingeniería (EMI) – Bolivia.


	ESTACION	Nº	INTERNET		
•	CONTINUA	32	13		
•	SEMI CONTINUA	08	0		
	PASIVA "A"	125			
	PASIVA "D"	108			

3. RED GRAVIMETRICA NACIONAL.

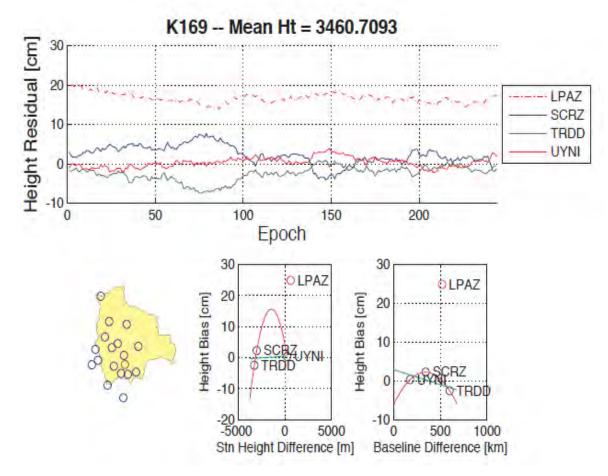

F 10 16			Altura	- 1		0 14	51404
Estación	Latitud	Longitud	s/n/m/	Fecha	Al 1	Gravedad 1	EMC 1
La Paz	-16,5091	-68,1187	3511	20/04/2011	0,718	977455,97	+/- 11 μGal
Curahuara	-17,8429	-68,4086	3921	21/04/2011	0,718	977381,87	+/- 11 μGal
Cochabamba	-17,3706	-66,1421	2636	22/04/2011	0,718	977771,53	+/- 11 μGal
Sucre	-19,0455	-65,2585	2778	23/04/2011	0,718	977810	+/- 11 μGal
Uyuni	-20,466	-66,826	3709	24/04/2011	0,718	977590,72	+/- 11 μGal
Potosí	-19,5813	-65,7539	3994	25/04/2011	0,718	977479,54	+/- 11 μGal
Tarija	-21,5402	-64,7283	1896	26/04/2011	0,718	978160,46	+/- 12 μGal
Camiri	-20,0403	-63,5211	809	28/04/2011	0,718	978335,75	+/- 12 μGal
Santa Cruz	-13,1593	-67,7962	411	29/04/2011	0,718	978350,35	+/- 13 μGal
San José	-17,8471	-60,7465	291	03/05/2011	0,718	978439,16	+/- 11 μGal
Puerto Suarez	-18,9557	-57,7943	105	03/05/2011	0,718	978552,08	+/- 11 μGal
Trinidad	-14,8276	-64,8909	153	06/05/2011	0,718	978321,44	+/- 11 μGal
Riberalta	-10,9997	-66,0807	138	07/05/2011	0,718	978220,78	+/- 11 μGal
Cobija	-11,0265	-68,7681	208	07/05/2011	0,718	978161,7	+/- 11 μGal
Apolo	-14,7223	-68,4295	1469	11/05/2011	0,718	977956,18	+/- 11 μGal

3. RED GRAVIMETRICA NACIONAL.

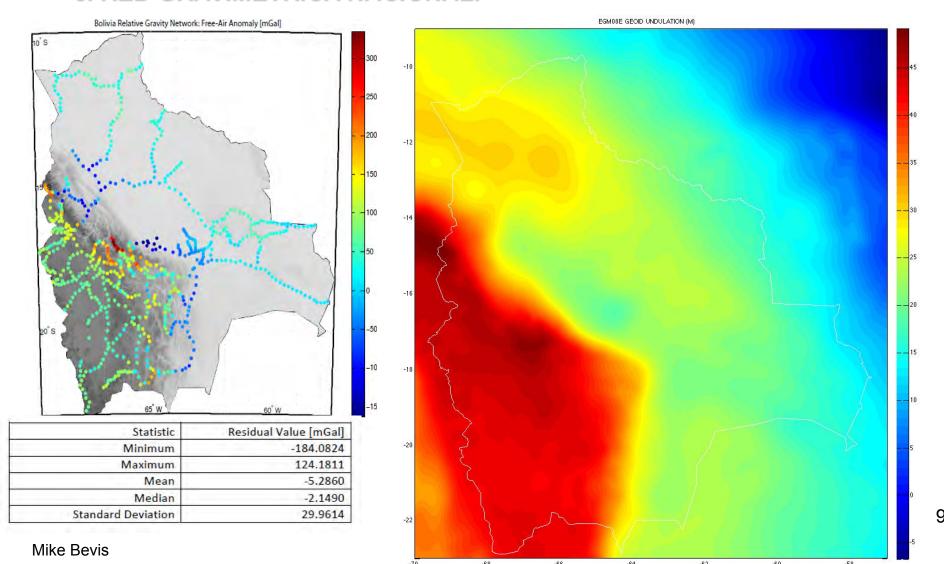


3. RED GRAVIMETRICA NACIONAL.

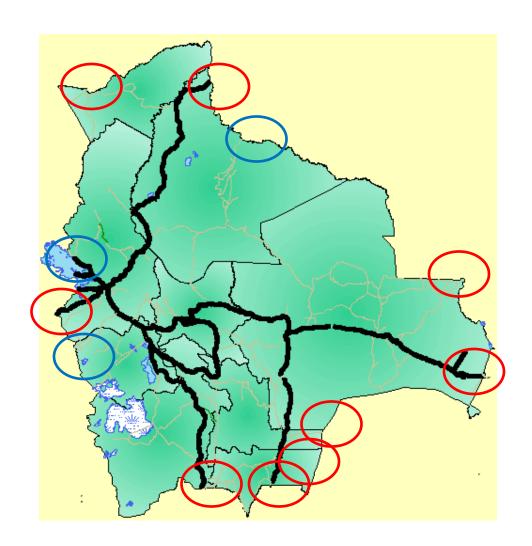
Bolivia Relative Gravity Tie Loop Misclosures between Absolute Gravity Stations [mGal] 10°S -0.0689 -0.276 15 S 0.0867 -0.228-0.156-0.0433 0.105 0.303 20° S -0.6080.118


65° W

60° W

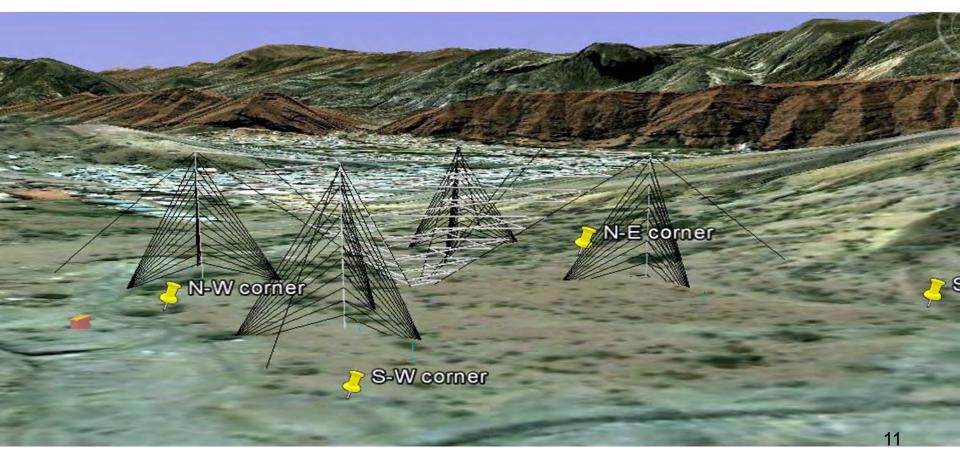

3. RED GRAVIMETRICA NACIONAL - MEDICIONES GPS.

- Se realizaron mediciones GPS de 1 hora en el modo estatico rapido.
- Se ajustaron las observaciones considerando las CGPS.
- Se aseguraron que los soluciones para los valores de altura elipsoidal < 50 cm.
- Las red gravimetrica relativa de primer orden fue medida por 5 gravimetros simultaneamente en ambos sentidos.
- Las red gravimetrica relativa de segundo orden fue medida por 2 gravimetros simultaneamente en ambos sentidos.


INSTITUTO GEOGRAFICO MILITAR

3. RED GRAVIMETRICA NACIONAL.

4. RED DE NIVELACION NACIONAL.

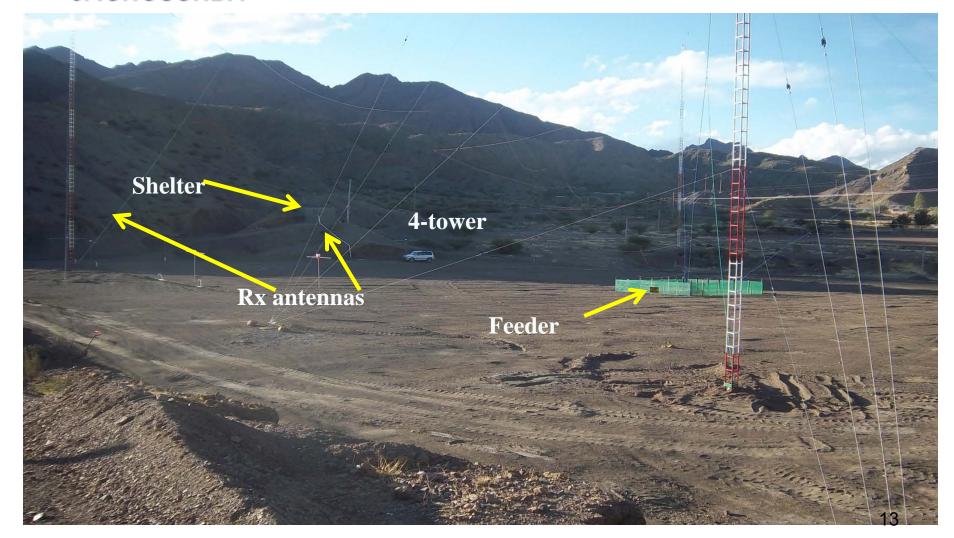


Se ha conducido el curso de capacitación para el calculo de números geopotenciales con la presencia en Bolivia de Roberto Luz.

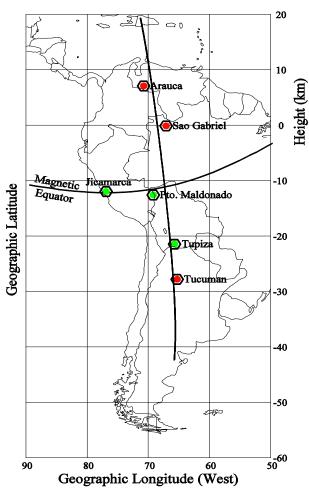
Se esta realizando el proceso de digitalización de líneas de nivelación en ficheros Excel. Para posteriormente realizar el calculo de números geopotenciales.

Se han cerrado líneas de nivelación con Perú en Desaguadero, con Brasil en Guayaramerin y con Chile en Bisbiri, se espera cerrar mas puntos con Brasil (Puerto Suarez), Argentina (Yacuiba – Villazón – Bermejo), Paraguay y Perú.

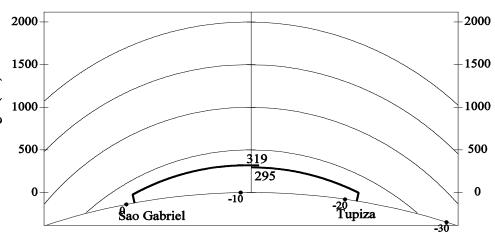
View of the Log-periodic Antenna installed at Tupiza (July – Nov 2012)


MEDICIONES QUE SE PUEDEN REALIZAR CON LAS IONOSONDAS:

- Usar las mediciones proporcionadas por dos VIPIRs de las capas E y Es ubicados en latitudes ~11-12° (a ambos lados del ecuador magnético) para estudiar el rol de las capas Es en el nacimiento y dinámica de ESF (burbujas de plasma).
- Calcular el valor de los vientos meridionales usando las ionosondas LISN y comparar estos valores con valores de mediciones realizadas en Sud América usando interferómetros Fabry-Perot y otras técnicas.
- Usar los datos de GPS y VIPIR conjuntamente con técnicas numéricas tomograficas para calcular perfiles de densidad de plasma a lo largo de del meridiano LISN (~67° W).

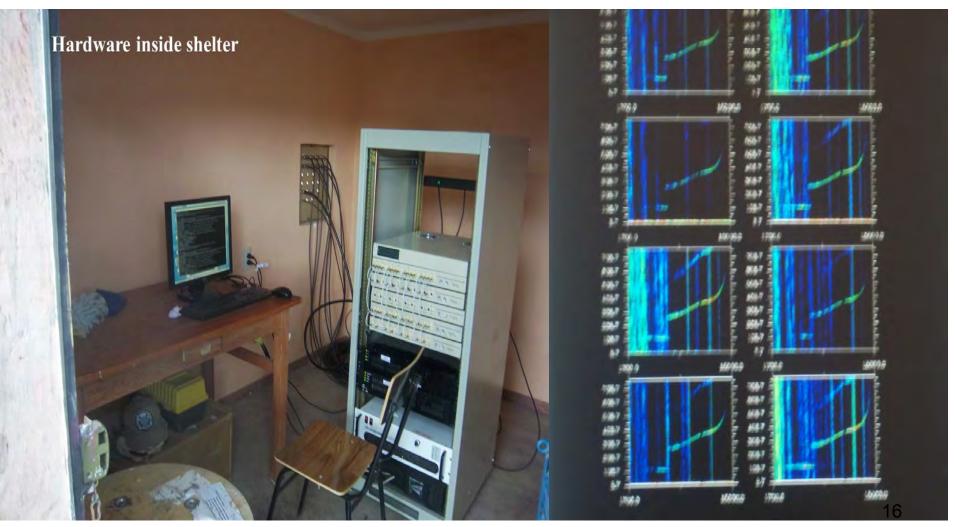


INSTITUTO GEOGRAFICO MILITAR

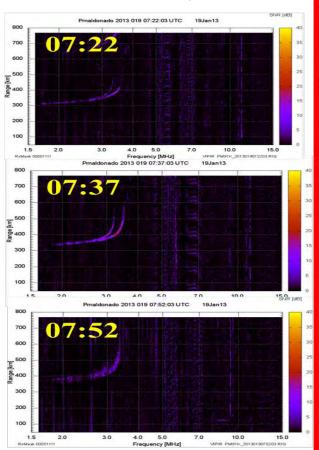

5. IONOSONDA

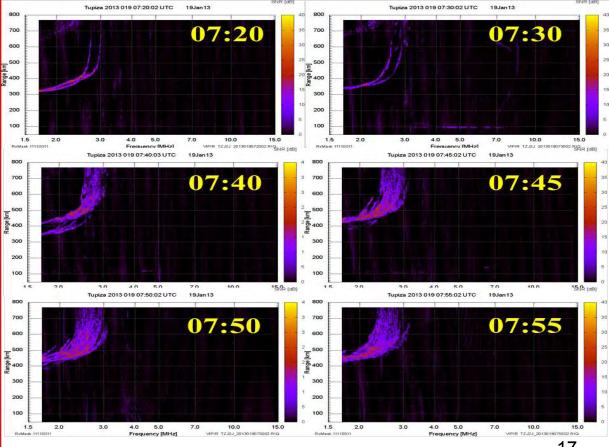
SA Ionosondes

E Region and ESF



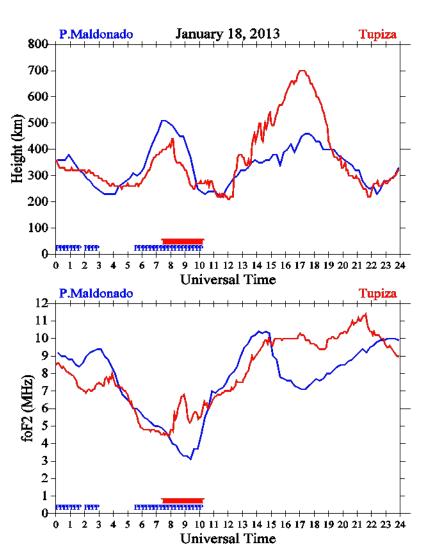
A traves de la linea que intersecta la region E entre las ciudades de Sao Gabriel, Brazil y Tupiza, Bolivia (a una distancia de 295~320) km del ecuador magnetico. Permitiran investigar: El rol de las capas $E_{\rm s}$ sobre el desarrollo de ESF. 2) Rol de la region E ecuatorial y no ecuatorial en el balance pre inverso de corrientes.

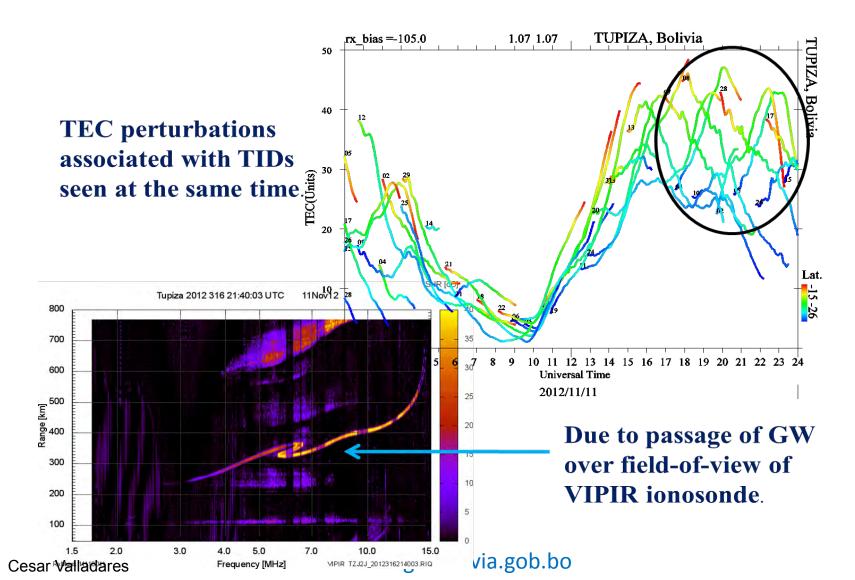


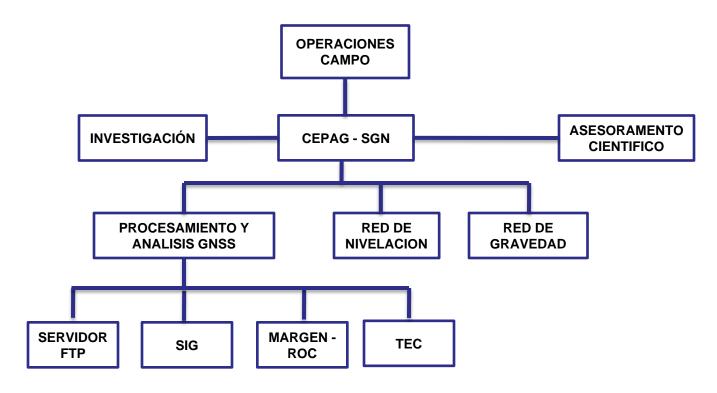


www.igmbolivia.gob.bo

P Maldonado, Peru


Tupiza, Bolivia – Jan 19, 2013




17

Comparison of h'F2 between Puerto Maldonado (equator) and Tupiza (11° S magnetic latitude).

f₀F2 values for Puerto
Maldonado and Tupiza for the same day.

Estructura de organización de la sección CEPAG.

- 1) Creación de la Red MARGEN de Operación Continua,
- 2) Resolución Administrativa de Consejo Técnico del IGM
- 3) Capacitación del Personal en el uso y empleo del Bernese 5.2
- 4) Practica a partir de la semana GPS 1740 hasta la semana GPS 1753 con soluciones semanales semi-libres contenidas en los parámetros aceptados por SIRGAS

Statistics:

Total number of authentic observations	6221389
Total number of pseudo-observations	126
Total number of explicit parameters	126
Total number of implicit parameters	17877
Total number of observations	6221515
Total number of adjusted parameters	18003
Degree of freedom (DOF)	6203512
A posteriori RMS of unit weight	0.00148 m 0.55
Total number of observation files	274
Total number of stations	42
Total number of satellites	0

1	AMCO 41696M001	Υ	ESTIM	2652254.92820	-5775435.47110	-538087.00550	-4.8719879	-65.3339793	75.91782
2	AREQ 42202M005	Ý	ESTIM	1942826, 22099	-5804070.36042	-1796894.19822	-16.4655163	-71,4927965	2488,93872
3	BATF 41666M001	Υ	ESTIM	4677358.31050	-3889198.86390	-1911503.84890	-17.5548700	-39.7433451	108.85595
4	BOMJ 41612M001	Υ	ESTIM	4510195.82427	-4268322.38588	-1453035.11917	-13.2555568	-43.4217357	419.39255
5	BRAZ 41606M001	Υ	ESTIM	4115014.06890	-4550641.60165	-1741443.84637	-15.9474738	-47.8778694	1106.00013
6	BRFT 41602M002	Υ	ESTIM	4985393.50661	-3954993.44905	-428426.59727	-3.8774458	-38.4255376	21.66634
7	CATA 41534M001	Υ	ESTIM	2302597.66430	-5117329.06270	-3022751.23490	-28.4709845	-65.7741208	547.14352
8	CHAC 41553M001	Υ	ESTIM	2921442.74720	-4854358.55930	-2919683.30250	-27.4204393	-58.9596932	77.93907
9	COPO 417145001	Υ	ESTIM	1907040.90840	-5337379.01840	-2916334.70710	-27.3845256	-70.3382352	479.07862
10	CRUZ 41641M001	Υ	ESTIM	1883105.42990	-6035606.27280	-839206.16720	-7.6111613	-72.6721105	236.01824
11	CUIB 41603M001	Υ	ESTIM	3430711.39390	-5099641.62658	-1699432.76993	-15.5552615	-56.0698670	237.44402
12	GOJA 41654M001	Υ	ESTIM	3761502.37872	-4767353.00247	-1946325.80800	-17.8832774	-51.7261093	755.25167
13	IACR 41721M001	Υ	ESTIM	2036608.50300	-5698319.69500	-2008830.85200	-18.4797475	-70.3328515	46.07277
14	MABA 41642M001	Υ	ESTIM	4156055.62178	-4801656.53360	-592100.47740	-5.3623770	-49.1222980	79.79597
15	MGBH 41667M001	Υ	ESTIM	4320741.80450	-4161560.51750	-2161984.08560	-19.9418994	-43.9248974	974.81996
16	MSCG 41649M001	Υ	ESTIM	3468912.08150	-4870550.48551	-2213735.37373	-20.4408992	-54.5407029	676.49328
17	MTCO 41670M001	Υ	ESTIM	3553110.82030	-5161363.47050	-1187759.89130	-10.8038638	-55.4562635	307.19731
18	MTVB 41690M001	Υ	ESTIM	3085619.68300	-5334029.62430	-1640843.72720	-15.0064253	-59.9515558	219.65164
19	NAUS 41614M002	Υ	ESTIM	3179409.35694	-5519130.69406	-334110.00180	-3.0229182	-60.0550169	93.88998
20	PAIT 41685M001	Υ	ESTIM	3553351.98210	-5275278.32640	-473671.57110	-4.2876555	-56.0363562	9.17192
21	PISR 41673M001	Υ	ESTIM	4629725.26970	-4272600.34880	-994572.46930	-9.0306920	-42.7027593	366.77141
22	PITN 41691M001	Y	ESTIM	4661982.64090	-4315989.86700	-563478.53570	-5.1024801	-42.7930295	67.96362
23	POAL 41616M001	Υ	ESTIM	3467519.44132	-4300378.61305	-3177517.58853	-30.0740409	-51.1197650	76.74819
24	PRMA 41674M001	Υ	ESTIM	3610720.82260	-4611288.43880	-2518636.18280	-23.4096869	-51.9384246	543.32345
25	RECF 41617M001	Y	ESTIM	5176588.60911	-3618162.17833	-887363.74400	-8.0509623	-34.9515168	20.12811
26	RIOB 41645M001	Υ	ESTIM	2373576.77227	-5817088.38587	-1096515.60600	-9.9654576	-67.8028119	172.60730
27	RIOP 42006M001	Υ	ESTIM	1255144.93755	-6253609.46639	-182569.81184	-1.6505955	-78.6511074	2817.19572
28	RNNA 41668M001	Υ	ESTIM	5184572.49300	-3658358.28030	-644238.49040	-5.8361392	-35.2077083	45.94164
29	ROCD 41679M001	Y	ESTIM	3055332.33220	-5409951.42040	-1438685.21340	-13.1222751	-60.5439107	451.69129

ftp://cddis.gsfc.nasa.gov/gos/data/daily/vvvv/ddd/vvd, (2013/062/13d/ ... /068/13d) or at: ftp://igs.ensq.ign.fr/pub/igs/data/yvyv/ddd (2013/062/ ... /068)

IGS stations are: AREQ, BRAZ, BRFT, CALL, CHPI, IQUI, POVE, RIOP, SALU, SAVO, UFPR, UNSA

IGM-Bolivia

Stations: SCRZ, URUS, UYNI, YCBA

IBGE: ftp://geoftp.ibge.gov.br/RBMC/dados

Stations: AMCO, BATF, BOMJ, CRUZ, CUIB, GOJA, MABA, MGBH, MSCG, MTCN, MTCO, MTVB, NAUS, PAIT, PISR, PITN, POAL, PRNA, RECF, RIOB, RNNA, ROCD, ROGM, ROJI, SJRP, TOPL

Chile: ftp://200.27.184.147 (password)

Stations: IACR, COPO, IQQE

Argentina: http://www.ion.gob.ar/DescargaRamsac

Stations: CATA, CHAC, SVIC, TUCU

Uncompress files, recover from Hatanaka compression (http://terras.gsi.go.jp/ja/crx2rnx.html), file names must be in capital letters.

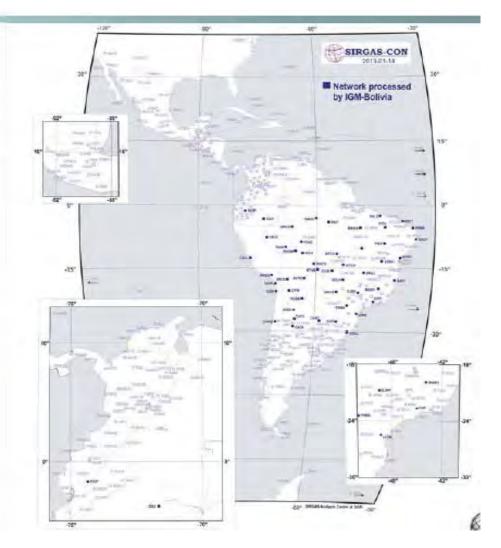
Estaciones incluidas en la red con características fundamentales: tipo de receptor, tipo de antena, altura de la antena (log files para estaciones de operación continua, hojas de campo para estaciones pasivas).

Fecha de observación:

2013-03-03 ... 2013-03-09

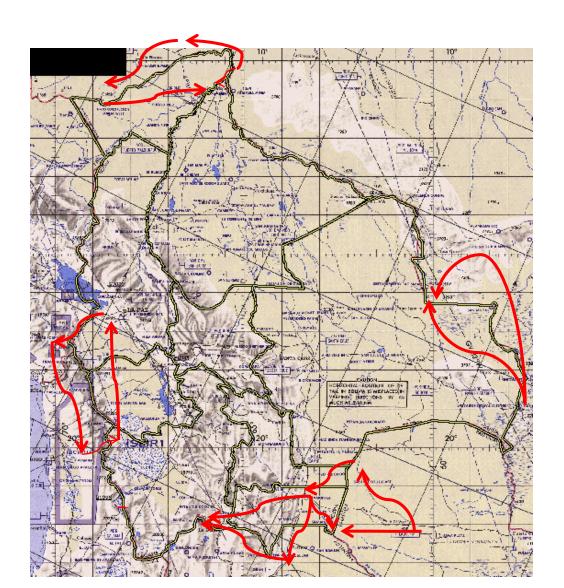
Semana GPS:

1730


Días consecutivos en el año:

062 ... 068 (2013)

Calendario GPS:


http://www.ngs.noaa.gov/CORS/Gpscal.shtml

Estaciones a procesar por el CEPAG - Bolivia

7. PROPUESTAS - DESAFIOS.

- 1) Al terminar la construcción de la lonosonda los datos estarán al alcance de la comunidad SIRGAS.
- 2) Facilitar los resultados de las mediciones de gravedad absoluta a la comunidad SIRGAS, especialmente para planificar el cierre de circuitos gravimétricos que recorran por cada país con la ejecución de trabajos de campo binacionales
- 3) Constituirse como un centro de procesamiento y análisis GNSS SIRGAS Bolivia (Oficial).

PROPUESTA REUNION SIRGAS 2014

CONFORME A NOTA ENVIADA A LA PRESIDENCIA DE SIRGAS EN DICIEMBRE DE 2011 Y RATIFICANDO LA MISMA, INFORMAR AL COMITÉ EJECUTIVO Y DIRECTIVO DE SIRGAS, E INVITAR A TODOS A LA PROXIMA REUNION SIRGAS 2014, QUE SE LLEVARA A CABO EN LA CIUDAD DE SANTA CRUZ - BOLIVIA.

·Santa Cruz de la Sierra

Ciudad de Bolivia

Santa Cruz de la Sierra, llamada comunmente Santa Cruz,

Fundada: February 26, 1561

Clima: 27°C, Wind SE at 14 km/h, 70% Humidity

Poblacion: ~ 2MM

Altura s/n/m: 416 metros

INSTITUTO GEOGRAFICO MILITAR

