Offsets between tide gauges in South America estimated from the filtered satellite-only mean dynamic topography

R. Čunderlík

cunderli@svf.stuba.sk

Department of Mathematics and Descriptive Geometry

Faculty of Civil Engineering

Slovak University of Technology

Bratislava Slovakia

Outline

Motivation

- geodetic approach to model the satellite-only MDT
- Nonlinear diffusion filtering on closed surfaces
 - regularized surface Perona-Malik model
- Nonlinear filtering of the satellite-only MDT
 - combination of DTU13 MSS and GO CONS GCF 2 DIR R5
 - special treatment to prolong information towards continents
- Interpolated values along coastlines or at tide gauges
 - in South America
 - detail in area of Caribbean Sea
- Conclusions

Combination of altimetry and gravity field

Satellite altimetry:

DTU13_MSS

Satellite-only geopotential models:

GO_CONS_GCF_2_DIR_R5

(SH up to d/o 300)

Satellite-only MDT in South America

satellite-only MDT

DTU13_MSS - GOCE_DIR5

(SH up to 300)

Nonlinear diffusion filtering on a closed surface

Linear heat equation on a (closed) surface:

$$\frac{\partial u(X,t)}{\partial t} = \Delta_S u(X,t)$$

$$\frac{\partial u}{\partial t} = \nabla_S \cdot (\nabla_S u)$$

 $\frac{\partial u}{\partial t} = \nabla_S \cdot (g(|\nabla_S u^{\sigma}|) \nabla_S u)$

 Δ_S - the Laplace-Beltrami operator

Regularized surface PIVI model

- nonlinear parabolic PDE

$$g(v) = \frac{1}{1 + H \left| \nabla_{S} u^{\sigma} \right|^{2}}$$

 $\nabla_{\rm S}$ - surface gradient

More details: Čunderlík R, Mikula K, Tunega M (2013) Nonlinear diffusion filtering of data on the Earth's surface. Journal of Geodesy, Vol. 87(2), pp. 143–160

Initial data

DTU13_MSS - GOCE_DIR5

(SH up to 300)

2 iterations

4 iterations

anoitereti 8

anoitereti 8

10 iterations

12 iterations

Stripping noise due to omission errors

Statistics	TOTAL	Pacific
Mean [m ² s ⁻²]	0.019	-0.004
STD [m ² s ⁻²]	2.687	1.201

DTU13_MSS - GOCE_DIR5
(SH up to 300)

1st pre-filtering

2nd pre-filtering

3rd (final) filtering

Filtered satellite-only MDT

MDT along coastlines in South America

MDT along coastlines in South America

Interpolated values at tide gauges

Estimated offsets between tide gauges

 $W_0 = 62 636 853.4 \text{ m}^2\text{s}^{-2}$

La Punta

Estimated offsets between tide gauges

Detail in Caribbean Sea

Satellite altimetry:

DTU13_IMSS

Satellite-only geopotential models:

GO_CONS_GCF_2_DIR_R5

(SH up to d/o 300)

Detail in Caribbean Sea

Satellite-only INDT

$$h^{MDT} = h^{MSS} - N^{GGM}$$

Filtered IVIDT

(after nonlinear diffusion filtering)

18 – 20 November 2015, Santo Domingo, Dominican Rep.

Offsets estimates at tide gauges

Conclusions

- ⇒ nonlinear diffusion filtering of the satellite-only MDT can efficiently reduce the stripping noise
- ⇒ appropriate way how to prolong information from the satellite-only MDT from oceans towards lands is essential in the process of <u>detecting reliable values at tide gauges</u> (or along coastlines)
- ⇒ the filtered satellite-only MDT can be useful for a <u>unifications of local vertical datums</u> as well as for an <u>establishment of the World Height System</u>

