

SIMPOSIO SIRGAS 2016

Instituto Geográfico Militar Quito-Ecuador 16-18 de noviembre 2016

GeoScope-Velocity: CALCULADORA GEODÉSICA PARA DISPOSITIVOS MÓVILES EN ANDROID STUDIO

L. Ayala¹; A. Tierra^{1, 2}; M. Luna^{1, 2}; A. Staller³; M.B. Benito³; M. Gaspar³

¹ Carrera De Ingeniería Geográfica Y Del Medio Ambiente. UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE. AV. GENERAL RUMIÑAHUI S/N, SANGOLQUÍ, ECUADOR. P.O. BOX 171 -5- 231B, email: alexlisz1.1.1.1@gmail.com.

² Grupo de investigación Geoespacial. UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE. AV. GENERAL RUMIÑAHUI S/N, SANGOLQUÍ, ECUADOR. P.O. BOX 171 -5-231B.

³ Dpto. Ingeniería Topográfica y Cartografía, EUIT Topográfica. Universidad Politécnica de Madrid. España.

GeoScope

CALCULADORA GEODÉSICA

0

Desarrollar una calculadora geodésica como aplicación para dispositivos móviles con sistema operativo Android que automatice la transformación de coordenadas a distintas épocas

[°]Marco Teórico

PROGRAMACIÓN EN LENGUAJE JAVA

2)

Java

SOFTWARE ANDROID STUDIO

La versión utilizada en la aplicación GeoScope-Velocity fue Android Studio 1.2.1.1

COORDENADAS CARTESIANAS

COORDENADAS GEODÉSICAS

COORDENADAS UTM

Ο

Figura 2. Sistema de coordenadas cartesianas Fuente: (Furones, 2011) Figura 1. Sistema de coordenadas geodésicas Fuente: (Leiva, 2003)

TRANSFORMACIÓN ENTRE ÉPOCAS

Ο

 \bigcap

Es el traslado de coordenadas de una época t_i a una época t_f

$$X(t_f) = X(t_i) + (t_f - t_i) * V_x$$
⁽¹¹⁾

$$Y(t_f) = Y(t_i) + (t_f - t_i) * V_y$$
(12)

$$Z(t_f) = Z(t_i) + (t_f - t_i) * V_z$$
(13)

 $Z(t_f) = Z(t_i) + (t_f - t_i) * V_z$ ⁽¹³⁾

Metodología

Modelo de velocidades para el Ecuador

Algoritmos e interfaces

Powered by the IntelliJ Platform

<Button

android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="CALCULAR" android:id="@+id/button9" android:onClick="capturarDatos" android:singleLine="false" android:visibility="visible" android:typeface="serif" android:textSize="16dp" android:longClickable="false" android:textColor="#fa000000" android:background="#ffff9d14" android:layout_alignParentBottom="true" android:layout_alignParentEnd="true" />

ESTRUCTURA DEL PROGRAMA

Herramientas Utilizadas

Ο

 \bigcirc

🗖 java

com.alex.velocity

- C to CarGeo
- 🖸 🚡 Elipsoides
- 🔁 🔁 🖸
- 🔁 GeoUtm1
- C 🔓 MenuConversion
- 🔁 🔁 Presentacion
- 🖸 🚡 Tutorial
- 🖸 🚡 Velocidades

Se organizó la estructura en nueve clases y seis interfaces de usuario, estas últimas funcionan como parte de la interfaz de la aplicación.

- res
 - 🗉 drawable
- 🔻 💼 layout
 - activity_car_geo.xml (2)
 - activity_geo_utm.xml (2)
 - activity_geo_utm1.xml (2)
 - activity_menu_conversion.xml (2)
 - activity_presentacion.xml (2)
 - activity_tutorial.xml (2)

D

0

BOTONES

<Button

android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="CALCULAR" android:id="@+id/button9" android:onClick="capturarDatos" android:singleLine="false" android:visibility="visible" android:typeface="serif" android:textSize="16dp" android:longClickable="false" android:textColor="#fa000000" android:background="#ffff9d14" android:layout_alignParentBottom="true" android:layout_alignParentRight="true" android:layout_alignParentEnd="true" /> Agregar justo bajo el id la siguiente línea:

android:onClick="nombre_de_la_función"

La función a la que estará enlazada el botón debe ser realizada en un "MainActivity" o dicho de otra forma en una clase o java.

TEXTVIEW

Tipo_del_objeto nombre = (Tipo_del_objeto) findViewByld(R.id.x)

if (checkBoxZ.isChecked())

Q

Esquema 1. Diagrama de flujo del proceso del aplicativo

О

Ó

Ć

O

Interfaces de la aplicación GeoScope-Velocity

CONCLUSIONES

El desarrollado del presente aplicativo facilita la transformación entre coordenadas cartesianas, geodésicas y UTM para diferentes épocas.

Esta aplicación obtiene coordenadas con precisión al milímetro y puede ser descargada de la tienda de aplicaciones "PlayStore" para cualquier dispositivo móvil con versiones de Android 4.0.3 en adelante.

AGRADECIMIENTOS

Agradecemos a Daniel Galarza por el asesoramiento recibido en la programación respectiva, fundamental para la elaboración de esta calculadora geodésica.

Ç

GRACIAS