

UFPR Universidade

SIMPOSIO SIRGAS 2017

VÍNCULO DEL DATUM VERTICAL ECUATORIANO AL INTERNATIONAL HEIGHT REFERENCE SYSTEM

José Luis Carrión Sánchez, MSc.

Prof. Dr. Sílvio Rogério Correia de Freitas

Prof. Dr. Riccardo Barzaghi

Mendoza, 28 de noviembre de 2017

CONTENIDOS

I. Introducción

II. Área de estudio y fuentes de datos

III. Métodos

IV. Análisis de resultados

V. Conclusiones y recomendaciones

I. INTRODUCCIÓN

Objetivo: Estimar en términos de geopotencial la discrepancia existente entre la realización original del DVE y la referencia global establecida para el IHRS $(W_0=62\ 636\ 853.4\ m^2s^{-2})$.

$$\Delta g_P = g_P - \gamma_Q \qquad \qquad \delta g_P = g_P - \gamma_P$$

Solución libre y solución fija del PVCG

$$C_{Pi} = W_{0i} - W_P = \sum_{0}^{P} g\Delta n$$

$$\bigcup$$

$$C_P - C_{Pi} = W_0 - W_{0i} = \delta W_i \cong [W_0 - (U_P + T_P)] - \sum_{i} g_{mi}\Delta n_i$$

$$\bigcup$$

$$W_P = G2 G2G PE2 A m^2 c^2$$

 W_0 = 62 636 853.4 m²s⁻²

II. ÁREA DE ESTUDIO Y FUENTES DE DATOS

DATUM VERTICAL ECUATORIANO

81°30'W

UFPR Universidade Federal do Paraná

81°15'W 80°15'W 81°45'W 81°0'W 80°45'W 80°30'W 80°0'W 1°15'S-1°30'S+ 1°45'S-2°0'S-DVE 2°15'S-2°30'S-1552,02 -34,90 2°45'S--1597,40 3°0'S--3159,91 -4698.00

Latitud (°)	- 2°13'10.1178″
Longitud (°)	-80°54'19.4667"
h (m)	18.112

FUENTE: Los autores, adaptado de Paredes (1986)

II. ÁREA DE ESTUDIO Y FUENTES DE DATOS

Aerogravimetria

Gravimetria terrestre 81'00'W 80'00'W 79''

1986 registros (Etapa I) 4808 registros (Etapa II) Proveedor: IGM-EC Sistema gravimétrico: IGSN71

8549 registros (Etapa I e II) Proveedor: BGI Sistema gravimétrico: IGSN71

 \rightarrow

WGM2012

INFORMACIÓN COMPLEMENTARIA: DTU15 → Región Oceánica

Región Continental

81°0'0"W 80°0'0"W

3443 registros (Etapa II) Proveedor: SGGSA Sistema gravimétrico: IGSN71

Modelamiento del DVE en el espacio del geopotencial: Solución Libre

III. MÉTODOS

Modelamiento del DVE en el espacio del geopotencial: Solución Libre

Universidade Federal do Paraná

Modelamiento del DVE en el espacio del geopotencial: Solución Libre

UFPR Universidade Federal do Paraná

Cálculo de anomalías de la gravedad para observaciones gravimétricas

$$\Delta g_{Molodensky} = g + (-0.3086 * Hn) - \gamma + \delta g_{atm} + \Delta g_H \quad Hn^* \approx h - N_{EGM2008}$$
Para puntos sin altitud nivelada

 $\Delta g_H = 0.0371(1 - 3sen^2\varphi) \longrightarrow$ Término de Honkasalo

 $\delta g_{atm} = 0.874 - 9.9 * 10^{-5}h + 3.56 * 10^{-5}h^2 \longrightarrow$ Corrección atmosférica

h e N: Transformación *tide free* \rightarrow *mean tide*

Observaciones gravimétricas

Sistema de marea permanente: mean tide Sistema gravimétrico: *IGSN71*

III. MÉTODOS

Filtrado de *outliers*

UFPR

Federal do Paraná

Base de datos oceánicos del BGI

Transformación Δ gBGI:GRS67 \rightarrow GRS80

$\Delta g_{GRS80} =$	Δg_{GRS67}	$+ \gamma_{GRS67} -$	γ_{GRS80}
----------------------	--------------------	----------------------	------------------

$$\Delta g_{res} = \Delta g_{BGI} - \Delta g_{DTU15}$$

Conjunto total

$$\Delta g_{res} = \Delta g_{OBS} - \Delta g_{EGM\,2008}$$

	Δg _{res} antes	Δg _{res} después
σ (mGal)	16.74	11.71
Coef. Correlación	0.9640	0.9820

5.53 % outliers

Un iversidade Federal do Paraná Modelamiento del DVE en el espacio del geopotencial: Solución Libre

ESTIMACIÓN DE LA ANOMALIA DE ALTITUD RESIDUAL

Modelamiento del DVE en el espacio del geopotencial: Solución Libre

UFPR Universidade Federal do Paraná

Grilla de anomalias de gravedad residuales

Funciones de covariancia COVFIT, EMPCOV (GRAVSOFT)

Modelamiento del DVE en el espacio del geopotencial: Solución Libre

BIAS E	N EL DVE	$RH - \frac{W_F}{W_F}$	$-W_0$	$\zeta_P = \zeta_{MG}$	$\zeta_G + \zeta_{RTM}$ -	+ ζ _{СΜ}	2	
Soluc	ion Libre	$pm_0 =$	γ ₀			Resid	ual	
		GO_CO_DIR_R5EIGEN6C4GO_CO_DIR_R5EIGEN6C4n=300n=1000n=200n=200						
	W ₀ (IAG)		62636853.400					
	<i>U</i> ₀ (GRS80)							
	<i>T_P</i> (m ² /s ²)	106.1527	104.7584	106.6032	106.6275			
	<i>W_P</i> (m ² /s ²)	62636850.5043	62636849.1101	62636850.9548	62636850.9792	Media (m)	σ (m)	
	<i>U_P</i> (m ² /s ²)	62636745.3195	62636745.3195	62636745.3195	62636745.3195			
Con ζ ₀	ζ _Ρ (m)	10.8873	10.7443	10.9335	10.9360			
	<i>βH₀</i> (m)	0.2873	0.4303	0.2411	0.2386	0.2557	0.0274	
	<i>dW</i> (m²/s²)	2.8014	4.1956	2.3509	2.3265			
	T _P (m²/s²)	115.2964	113.9021	115.7468	115.7702			
	W _P (m ² /s ²)	62636859.6480	62636858.2538	62636860.0985	62636860.1219			
Sin Co	U _P (m²/s²)	62636745.0293	62636745.0293	62636745.3195	62636745.3195			
011 90	<i>ζ_P</i> (m)	11.8251	11.6821	11.8713	11.8737			
	βH ₀ (m)	-0.6505	-0.5075	-0.6967	-0.6991	-0.6821	0.0274	
	dW(m²/s²)	-6.3423	-4.9481	-6.7928	-6.8161			

R

UFPR Universidade Federal do Paraná

Modelamiento del DVE en el espacio del geopotencial: Solución Fija

III. MÉTODOS

Modelamiento del DVE en el espacio del geopotencial: Solución Fija

Universidade Federal do Paraná

UFPR

Modelamiento del DVE en el espacio del geopotencial: Solución Fija

Cálculo de distúrbios de la gravedad

Observaciones gravimétricas
 Sistema de marea permanente: mean tide
 Sistema gravimétrico: IGSN71
 h e N: Transformación tide free → mean tide

Universidade $\delta g = g + \Delta g_H - (\gamma - \ \delta g_{atm} + \ \delta g_h)$

 $\Delta g_H = 0.0371(1 - 3sen^2 \varphi) \longrightarrow$ Término de Honkasalo

 $\delta g_{atm} = 0.874 - 9.9 * 10^{-5}h + 3.56 * 10^{-5}h^2 \longrightarrow$ Corrección atmosférica

 $\delta g_h \longrightarrow$ Reducción a la gravedad normal a la SF

Disturbios de la gravedad provenientes del DTU15 y del WGM2012

 $\delta g = \Delta g_{MODELO} - \delta g_h$ Transformación de anomalías a disturbios

 $\delta g_h = -(0.3087691 - 0.0004398 sen^2 \varphi)h + 7.2125 * 10^{-8}h^2 \ (GRS80)$

Reducción de la gravedad teórica según la altitud *h* Gravedad teórica del teluroide hasta la SF \rightarrow h: ζ (EIGEN6C4, n =2190)

Modelamiento del DVE en el espacio del geopotencial: Solución Fija

Eliminación de outliers: base de datos del BGI

Federal do Paraná

$$\delta g_{res} = \delta g_{obs} - \delta g_{DTU15} - \delta g_{RTM} = \delta g_{obs} - \delta g_{modelo}$$

Eliminación de outliers: Conjunto total

$$\delta g_{res} = \delta g_{obs} - \delta g_{EIGEN6C4} - \delta g_{RTM}$$

		δg _{res} Antes	δg _{res} después	% eliminado
σ (mGal)	4°x4°	15.77	13.50	
	3°x3°	11.59	10.45	
	2°x2°	10.48	10.08	
Coef.	4°x4°	0.9729	0.9799	1.03
Correlación	3°x3°	0.9849	0.9877	0.71
	2°x2°	0.9886	0.9895	0.53

III. MÉTODOS

III. MÉTODOS

Grilla δg_{RES} GOCO_DIR_R5 (*nmax*=200)

Interpolación: Media ponderada III. MÉTODOS GEOGRID (GRAVSOFT) Espaciamiento: 4 min arc

Funciones de covariancia COVFIT, EMPCOV (GRAVSOFT)

Funciones de covariancia GOCO_DIR_R5 (*nmax*=200)

GOCO_DIR_R5 (nmax=300)

Bias Solución Fija		nmax=300			nmax=200				
		4°x4°	3°x3°	2°x2°	4°x4°	3°x3°	2°x2°		
	Τ _Ρ (m²/s²)	105.9928	105.7978	106.6851	105.9002	106.1537	108.6692		
	W _P (m²/s²)	62636850.3444	62636850.1494	62636851.0367	62636850.2518	62636850.5053	62636853.0208	Media (m)	σ (m)
Con	U _P (m²/s²)	62636745.3195			62636745.3195				
05	ζp	10.8709	10.8509	10.9419	10.8614	10.8874	11.1454		
	dH _o (m)	0.3037	0.3237	0.2371	0.3132	0.2872	0.0292	0.3069	0.0155
	dW (m²/s²)	2.9613	3.1563	2.2690	3.0539	2.8004	0.2848		
	Τ _Ρ (m²/s²)	115.1365	114.9415	115.8287	115.0439	115.2974	117.8129		
	W _P (m²/s²)	62636859.1980	62636859.2931	62636860.1804	62636859.3955	62636859.6490	62636862.1645		
Sin ζ_0	U _P 62636745.3195		62636745.3195						
	ζp	11.8087	11.7887	11.8797	11.7992	11.8252	12.0900		
	dH _o (m)	-0.6341	-0.6141	-0.7051	-0.6246	-0.6506	-0.9086	-0.6309	0.0155
	dW (m²/s²)	-6.1824	-5.9874	-6.4151	-6.0897	-6.3433	-8.8588		
	W ₀ (IAG) (m²/s²)	62636853.400			62636853.400				
	U ₀ (GRS80) (m²/s²)	62636860.850				62636860.850			

IV. ANÁLISIS DE RESULTADOS

Término de grado cero considerado

Término de grado cero no considerado

IV. ANÁLISIS DE RESULTADOS

ESTACIONES IHRF

Universidade Federaldo Paraná

Región	Radio (km)	N° registros
I	10	470
II	50	2265
Ш	110	1809
IV	210	5733

UFPR Universidade Federal do Paraná

- Las características heterogéneas de los datos hace que sea necesario compatibilizar los registros gravimétricos en términos de referenciales geodésicos, resoluciones espaciales y sistemas de mareas involucrados.
- La eliminación de errores groseros (*outliers*) fue realizada con el objetivo de desconsiderar del análisis aquellos registros con ruido predominante.
- Soluciones libres resultan en un *bias* del DVE en relación al W₀ del IHRS de aproximadamente 25 cm cuando considerado el término de grado cero y de -68 cm cuando desconsiderado el término de grado cero.
- Soluciones fijas apuntan a que el DVE se sitúa cerca de 30 cm encima de la referencia global cuando considerado o termo de grado cero y de -63 cm cuando desconsiderado el término de grado cero.
- Aún existen dudas en el ámbito de la IAG con respecto a la forma más adecuada de realizar los vínculos locales con el valor de W₀ del IHRS. Este análisis aún está en curso en el ámbito del IAG/GGOS Working Group 0.1.2 on the Strategy for the Realizationof the IHRS.

GRACIAS!

POLITECNICO MILANO 1863

AGRADECIMIENTOS:

- Al Instituto Geográfico Militar de Ecuador (IGM-EC) por proporcionar los registros gravimétricos continentales *in-situ* utilizados.
- A la Secretaria Nacional de Educación Superior Ciencia, Tecnología e Innovación (SENESCYT) por la beca de estudios de José Carrión.
- Al CNPq por el apoyo PQ proceso 306936/2015-1