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Motivation: ITRF kinematics based on station velocities  TLTI

* The International Terrestrial Reference Frame (ITRF) provides station
coordinates for an instant of time (epoch date) and constant velocities for
interpolating or extrapolating the station coordinates at a particular date

(instant of time), e.g. for satellite tracking, point positioning, navigation, ...

* The basic reason for adopting this procedure was that station coordinate
changes were assumed to be mainly due to crustal movements caused by
tectonic motions, which are constant over long time intervals.

[At the beginning of the ITRF-series (1989) velocities were taken from the
geophysical plate model AMO-2 (Minster and Jordan 1978)].

* Time series of station coordinates demonstrate today many non-constant
velocities due to various reasons:

- abrupt co-seismic dislocations (at the time of an earthquake);
- abnormal post-seismic velocities (after an earthquake);

- non-linear environmental effects (at any time);

- instrumental (antenna) changes.
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Examples of dislocations in station position time series

1. Abrupt co-seismic dislocations (caused by large earthquakes)

Time series for [ID2. (Calif.-Nevada)
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Time series for PBR2.(BURMA)
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Earthquakes M > 6 over two years time interval

https://earthquake.usgs.gov/earthquakes/map/

TUTI

From 2015-07-01
until 2017-06-30
we had 265 earth-
quakes M > 6.0
causing significant
deformations of
the Earth’s crust;
not only close to
the epicentre, but
extended over
very large regions.



Dislocations after the Maule (Chile) earthquake 2010
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Figure shows horizontal displacements based on ARIA verion 0.3 position estimates for
GEONET stations. Coseismic displacement is shown in red, and first 8 hours of postseismic
motion is shown in blue, including motion caused by aftershocks. Bars at end of vector show
95% error estimate. Solutions courtesy of ARIA team at JPL and Caltech (email
aria@jpl.nasa.gov or aria@caltech.edu). All original GEONET RINEX data provided to Caltech by
the Geospatial Information Authority (GSI) of Japan.
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Dislocations after
the Tohoku (Japan)
earthquake 2011



Examples of abnormal velocities in station time series

2. Abnormal velocities after earthquakes
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Time series for ANTC. (CHILE)
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Velocity changes after the Maule (Chile) earthquake 2010  TLTI

The velocity change extends between latitude -30° and -40° over the entire
continent from the Pacific to the Atlantic coast (Sanchez and Drewes 2016)
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Environmental effects on position time series

3. Seasonal, long-periodic or irregular coordinate variations
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Effect of variable station velocities on the ITRF M

Velocity differences ITRF2008 - ITRF 2005 (outliers > 1 cm/a not included)

Velocity differences ITRF2008 - ITRF2005

210° 240" 270" 300° 330° o 30 60" 90 120° 150° 180°

H. Drewes: Frequent epoch reference frames, SIRGAS Symposium, Mendoza, Argentina, 27-29 November 2017

10



Effect of variable station velocities on the ITRF M

Velocity differences ITRF2014 — ITRF 2008 (outliers > 1 cm/a not included)
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Variable station velocities in SIRGAS (— Sanchez 2017)

TUTI

Different velocities in SIRGAS multi-year solutions
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The need of time-dependent coordinates M

Where are time-dependent coordinates needed?

e Satellite orbit determination:
- satellite orbit is independent of crustal movements, tracking stations not;
- tracking station coordinates must refer to the actual (real) position;

—> e.g., missing seasonal effects falsify sea level estimates of satellite
altimetry.

e Geodynamics and global change studies:
- studies are based on time-dependent station coordinates (deformation);

—> seismic precursors and effects of climate change (e.g. sea-level rise) are
at the mm-level.

* Precise point positioning, e.g. cadastre, engineering (tubes, power lines),
precise navigation:

- actual station coordinates are required to relocate the positions ;
—> e.g., Japan and Chile could not use the ITRF after the 2010 earthquakes.

» Geographical and temporal inter- / extrapolation is required.
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Compute ITRF coordinates of an arbitrary point Tm
at an arbitrary epoch (geographic and time extrapolation)

In principle, a consecutive extrapolation with different dislocations and
velocities is required.

» The ITRF provides the g
coordinates and velocities at o iy 2 =
. . c c 8 ==
different epochs via the o 5. c
corresponding “solutions”. = S S =
- on
* There are new solutions < 3 2 © .
: _ e NV —
(coordinates, velocities) after = %
each discontinuity. = £ ,
. u('JU d ! Vg(flz f2/ ) !
* For non-ITRF stations we have v, | &
to perform a geographic and /w ‘ — -t
consecutive time extrapolation. t, t t, t,.......... it & %

» Instead of irregular “new solutions” at discontinuities we can introduce
frequent regular epochs (every week, month, ...) and quit the velocities.
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Requirements of regular ITRF epoch reference frames M

Epoch reference frames must fulfil the IERS conventions, in particular:

* They must be geocentric at any time (without “geocentre motion”);
(“geocentre motion” is its motion relative to the varying ITRF positions)
- it is realised by SLR if we don’t add any constraint (e.g. NNR, NNT).

There must be no global rotation of stations (over the entire Earth’s crust);
(present ITRFs rotate ~0.06 mas/a (max. 1.8 mm/a) due to rotating NUVEL-1A);
- it can be realised by integrating an epoch grid over all the Earth surface.

* They must be consistent with the ICRF (EOP determined by VLBI);

- the present time resolution might not be sufficient;

- sub-daily EOP are already in discussion.

The time resolution of epoch reference frames should be 1 month;

- this is necessary for precise geocentric realisation (SLR);

- itis sufficient because maximum velocities are ~ 10 cm/a.

* For global accessibility they should include continental reference frames;
- AFREF, APREF, EUREF, NAREF, SIRGAS refer to the ITRF;
- |t can be done by decentralised data processing.
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Transforming epoch coordinates to a conventional frame  TUT]

Most reference frames refer to a conventional reference date (epoch) [X(t,)]

(e.g. ITRF2014 to 2010.0, national SIRGAS frames to different t,)

* Coordinates determined in an epoch reference frame [X(t;)] must be
transferred to the conventional date [X(t,)].

* For reference frame stations, the differences AX = X(t;) —X(t,) are known.

* For (new) stations not included in the reference frame, the differences
must be interpolated. This can be done equivalently to the interpolation of
station velocities using AX instead of Av.

" For interpolation one may use any

vector technique (e.g. bilinear, least
squares collocation, kriging, splines).
O\ o This includes the method of VEMOS.

The advantage of interpolating directly

o / ° AX instead of extrapolating AX = v - At
¢ is that the propagation of errors is less.
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Transforming epoch coordinates to a conventional frame  TUT]

A frequently made mistake is to apply a similarity (Helmert) transformation.
e Similarity means that two networks are identical in the order of coordinate
precision (e.g. £ 1 mm) and differ only in datum (origin, rotation, scale).

* Network deformation (of the Earth crust) exceeds the precision by far.

 When applying similarity transformation, the network deformation is split
among translation, rotation, scale and transformed coordinates.

 Example: Coordinates of only one station (out of 10) are changed by 1 cm.
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The transformation changes the datum by 1 cm : 10 =1 mm. 9 coordinates
change by 1 mm, and coordinates of the displaced station change by 9 mm.
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Conclusions Tm

There are many SIRGAS/ITRF stations with abrupt co-seismic dislocations.

There are many SIRGAS/ITRF stations with abnormal velocities after seism.

There are many SIRGAS/ITRF stations with non-linear environment effects.

There are many SIRGAS/ITRF stations with antenna changes creating jumps.

» All these effects make the determination of velocities difficult.
» The proposal is to replace velocities by frequent epoch reference frames!

Thank you very much for your attention!
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