

Un modelo de mareas para el Observatorio Argentino-Alemán de Geodesia (AGGO) utilizando observaciones del gravímetro superconductor SG038

Ezequiel D. Antokoletz 1,2; Hartmut Wziontek 3; Claudia Tocho 1,4

¹ Facultad de Ciencias Astronómicas y Geofísicas – Universidad Nacional de La Plata, Argentina
² Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Argentina
³ Federal Agency for Cartography and Geodesy (BKG), Alemania
⁴ Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina (CIC)

1

- Metodología
- Resultados y Análisis
- Conclusiones

Introducción

- Metodología
- Resultados y Análisis
- Conclusiones

Introducción

Observatorio Argentino – Alemán de Geodesia (AGGO)

- Convenio entre CONICET (Argentina) y BKG (Alemania);
- Observatorio Fundamental de Geodesia ubicado en las cercanías de la ciudad de La Plata, Buenos Aires;
- Instrumental:
 - VLBI (Interferometría de Base Muy Larga);
 - SLR (Laser a Satélite);
 - Gravimetría;
 - GNSS/GPS;
 - Sismómetro;
 - Tiempo;
 - Sensores meteorológicos e hidrológicos.

Introducción

Observatorio Argentino – Alemán de Geodesia (AGGO)

- Convenio entre CONICET (Argentina) y BKG (Alemania);
- Observatorio Fundamental de Geodesia ubicado en las cercanías de la ciudad de La Plata, Buenos Aires;
- Instrumental:
 - VLBI (Interferometría de Base Muy Larga);
 - SLR (Laser a Satélite);
 - Gravimetría;
 - GNSS/GPS;
 - Sismómetro;
 - Tiempo;

Sensores meteorológicos e hidrológicos.

Red de estaciones de gravímetros superconductores

6

Gravímetro Superconductor

- Gravímetro Relativo;
- Alta sensibilidad;
- Precisión: 0.01 nm/s^2;
- Alta estabilidad temporal.

Sistema de medición del SG. Modificada de Warburton et al. (2010).

Introducción

Gravímetro Superconductor

- Campo magnético generado por bobinas;
- Medición consiste en el voltaje que la bobina de realimentación imprime en la esfera para mantenerla en equilibrio;
- Permite estudiar diversos fenómenos físicos:

Introducción

Gravímetro Superconductor

- Campo magnético generado por bobinas;
- Medición consiste en el voltaje que la bobina de realimentación imprime en la esfera para mantenerla en equilibrio;
- Permite estudiar diversos fenómenos físicos:

- Metodología
- Resultados y Análisis
- Conclusiones

- Metodología Pre-procesamiento
 - Tres años (2016-2018) de datos cada 10 seg.: a) Observaciones del SG038 en voltaje. b) Presión atmosférica.

Señal observada por el SG038 en unidades de gravedad.

- Mareas terrestres:
 - Catálogo de Mareas: Tamura (1987);
 - Parámetros sintéticos (Dehant et al., 1999).

- Carga oceánica:
 - Ocean tide loading provider (<u>http://holt.oso.chalmers.se/loading/</u>); Parámetros FES2014b (Carrere et al., 2016).

- Atmacs: Atmospheric attraction computation service (BKG)
 - Atracción Newtoniana;
 - Deformación.
- Modelo atmosférico: ICON 384.

• Resolución mejorada con presión atmosférica local.

• Coordenadas publicadas por el IERS. (EOP CO4).

Metodología – Análisis Armónico

- El análisis de mareas consiste en determinar las amplitudes y desfasajes de las ondas de marea de frecuencias específicas a partir de datos observacionales. La cantidad de ondas que se pueden determinar y con qué precisión depende de la longitud del registro utilizado y de las características de ruido de la estación.
- Mínimos Cuadrados;
- 55 ondas de marea ajustadas;
 - Factores de Amplitud;
 - Desfasajes.
- Orden 1 y 2, correspondientes al grado 3 del potencial de marea han sido introducidos para las ondas con mayor amplitud;
- Retardo de tiempo (8.3 s) causado por la electrónica ha sido introducido.
- Efectos por movimiento del polo y LOD son eliminados en el procesamiento.
- Drift instrumental y tendencias de largo período son eliminados con un polinomio de grado 1;
- Modelo de Tierra: non-hydrostatic inelastic Earth model, Dehant et al. (1999).

Federal Agency for Cartography and Geodesy

Ministerio de Ciencia, Tecnología e Innovación

- Metodología
- Resultados y Análisis

	Rango de Frecuencias		Amplitud	Factor de	Desuío	Desfereie	Desvío	
Onda	Desde [ciclos por día]	Hasta [ciclos por día]	Teórica [nm/s^2]	Amplitud (H)	Estándar	[°]	Estándar [°]	
Mm	0.019700	0.050500	5.048	1.25145	0.4196	0.134	19.149	
Mf	0.053000	0.400000	1.527	1.81537	0.9959	7.220	31.466	
Q1	0.879000	0.894500	55.772	1.19933	0.0017	0.110	0.079	
01	0.913900	0.932250	291.295	1.18837	0.0004	-0.163	0.018	
NO1	0.965076	0.966757	22.898	1.17653	0.0037	-0.396	0.178	
P1	0.996201	0.999674	135.517	1.17034	0.0003	-0.222	0.017	
S1	0.999679	1.001663	3.202	1.42347	0.0203	-4.273	0.818	
К1	1.001677	1.004115	409.514	1.15590	0.0002	-0.267	0.007	
J1	1.036560	1.053060	22.906	1.16764	0.0044	-0.168	0.214	
001	1.073160	1.096600	12.527	1.17093	0.0074	0.728	0.360	
N2	1.878200	1.898429	96.802	1.19592	0.0003	0.920	0.015	
M2	1.931400	1.933987	505.582	1.18166	0.0001	0.538	0.002	
S2	1.997713	2.001215	235.202	1.16659	0.0002	0.135	0.007	
К2	2.004395	2.030489	63.898	1.16461	0.0006	0.251	0.027	
M3	2.885000	2.915496	8.150	1.08973	0.0013	0.841	0.071	
M4	3.864500	3.864600	0.122	1.27095	0.0561	-7.274	2.530	
		Gra	do 3 del Poten	cial de Marea				
Q1	0.879000	0.894500	0.973	1.30997	0.2470	3.098	10.800	
01	0.913900	0.932250	0.498	1.11176	0.2736	-10.118	14.100	
NO1	0.965076	0.966757	3.045	1.30702	0.2215	-1.445	9.700	
J1	1.036560	1.053060	1.111	1.30568	0.2438	-3.344	10.700	No logra
N2	1.878200	1.898429	7.036	1.08245	0.0051	-0.059	0.272	determina
M2	1.931400	1.933987	1.061	1.12783	0.0269	1.082	1.368	0.000111110
S2	1.997713	2.001215	0.066	2.50240	0.5754	1.045	13.173	
К2	2.004395	2.030489	0.354	0.99323	0.0908	-3.370	5.239	

Resultados del análisis de marea: parámetros de marea y desviaciones estándar estimados a partir de la serie temporal de datos de gravedad en AGGO para para las principales ondas de marea.

Residuos del ajuste:

- RMS: $26.28 nm/s^2$;
- Remanente: señales ambientales no modeladas: señal hidrológica (local y global) y otros efectos de carácter no mareal (onda de tormenta, carga oceánica no mareal).

Residuos del ajuste:

- RMS: $26.28 nm/s^2$;
- Remanente: señales ambientales no modeladas: señal hidrológica (local y global) y otros efectos de carácter no mareal (onda de tormenta, carga oceánica no mareal).

Espectro de amplitud de los residuos obtenidos

Separación de los efectos de Mareas Terrestres y Carga Oceánica (OTL):

Se evaluaron cuatro modelos de carga oceánica:

- EOT11a (Savcenko et al., 2012);
- FES2014b (Carrere et al., 2016);
- TPXO9-Atlas (Egbert et al., 2002);
- GOT4.10c (Cheng y Andersen, 2010).

Parámetros provistos por el Ocean Tide Loading Provider.

Factor de Amplitud

- FES2014b y TPXO9Atlas muestran mejor acuerdo con los valores teóricos;
- K2 del modelo GOT4.10c muestra una mayor diferencia respecto del resto;
- Mm y Mf son las ondas mensuales y semi-mensuales, respectivamente muestran mayores diferencias respecto a los valores teóricos debido a que no son del todo bien determinadas en el ajuste.

Desfasaje [°]

- FES2014b y TPXO9Atlas nuevamente muestran un mejor acuerdo con los valores teóricos (recordar que el desfasaje teórico es cero);
- K2 y Q1 del modelo GOT4.10c muestra una mayor diferencia respecto del resto;
- Mm y Mf son las ondas mensuales y semi-mensuales, respectivamente muestran mayores diferencias respecto a los valores teóricos debido a que no son del todo bien determinadas en el ajuste.

- Metodología
- Resultados y Análisis

Conclusiones

- Un nuevo modelo de mareas ha sido obtenido para AGGO a partir de observaciones del gravímetro superconductor SG038;
- Los residuos muestran una señal posiblemente debida a efectos hidrológicos (tanto local como global) y efectos de carga no mareal (onda de tormenta y carga oceánica no mareal);
- Se han evaluado cuatro modelos de Carga Oceánica a fin de separar dicho efecto de las Mareas Terrestres:
 - FES2014b y TPXO9Atlas muestran el mejor acuerdo respecto de los valores teóricos;
 - Mm y Mf no han sido determinadas con suficiente precisión es necesario extender la serie de datos. Frecuencias asociadas a la onda de tormenta pueden estar afectando la determinación de dichas ondas.

	Rango de F	recuencias	Amplitud	Factor de	Decuío	Decfeceio	Desvío	
Onda	Desde	Hasta	Teórica	Amplitud	Estándar	r°1	Estándar	
	[ciclos por día]	[ciclos por día]	[nm/s^2]	(H)	LStanual		[°]	
Mm	0.019700	0.050500	5.048	1.25145	0.4196	0.134	19.149	
Mf	0.053000	0.400000	1.527	1.81537	0.9959	7.220	31.466	

• El modelo de mareas terrestres (habiendo eliminado el efecto de carga oceánica) puede ser utilizado a nivel regional para corregir observaciones gravimétricas.

Federal Agency for Cartography and Geodesy

Ministerio de Ciencia, Tecnología e Innovación

Muchas gracias!