

Recent activities of the GGOS Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO)

BKG, Frankfurt: Daniela Thaller

GFZ, Potsdam: Benjamin Männel, Susanne Glaser

DGFI-TUM, Munich: Alexander Kehm, Mathis Bloßfeld

Workshop on the Implementation of the GGRF in Latin America, September 19, 2019, Buenos Aires

PLATO has been established in 2014

Topics to be studied and methods used

Overall goal: Fulfill the GGOS requirement for accuracy and stability of the reference frame (1 mm in position, and 0.1 mm/y in velocity)

Questions to be answered:

How can the gobal reference frame benefit from:

- Improved system performance?
- Denser ground network?
- More co-location sites?
- Inclusion of other available observation data?
- Inclusion of space-based co-locations?
- New observation concepts?

Simulation studies

Federal Agency for Cartography and Geodesy

Improved analysis strategies

Simulations: Improving the SLR network

- Investigate impact of a single additional SLR station on geodetic parameters:
 - real network + one of 42 grid points (equally distributed)
- Station performance:
 - real network: as is (station-wise average)
 - "new" stations: 20% of possible passes

Simulations: Improving the SLR network

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)

- Stations in equatorial regions: LOD improves most
- Stations on Southern hemisphere: all ERPs benefit

2 Simulated networks:

 Reference network: Global SLR network excluding all Latin American stations (except of Arequipa)

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM

 Calculation of different solutions containing additional stations in Latin America

Focus on SLR stations in South America: Impact on Geocenter + Scale

• Adding San Juan only:

- 16-17 % improvement in translations
- 14 % improvement in scale
- Adding San Juan, La Plata and Brazilia:
 - 25-26 % improvement in tx and ty, 29 % in tz
 - 21 % in scale
- Adding all (San Juan, La Plata, Brazilia, Colombia):
 - Similar result, the improvement in tz increases to 31 %

At least a permanently operational **4-station SLR network** is required for TRF determination, a 5th station in Colombia would help to improve the z-translation.

Focus on SLR stations in South America: Impact on Earth Rotation Parameters

- Adding San Juan only:
 - 2.3 % improvement in x-pole, 4.0 % in y-pole
 - 1.4 % improvement in LOD
- Adding San Juan, La Plata and Brazilia:
 - 6.0 % improvement in x-pole, 8.3 % in y-pole
 - 3.7 % improvement in LOD
- Adding all (San Juan, La Plata, Brazilia, Colombia):
 - Similar result

An operational **4-station SLR network** improves the ERP estimation; A 5th station in Colombia would further support this goal.

SLR stations in South America

- Study impact of 14 additional SLR stations on reference frame
- Station performance: based on Total Cloud Cover from numerical weather model ERA5

Precision of estimated parameters w.r.t. current SLR network:

- Station coordinates \vec{X} , velocities \vec{X} (average over all stations)
- ERPs: pole coordinates (*xp*,*yp*), UT1-UTC

	$\overline{s}_{ec{X}}$ [mm]	$\overline{s}_{\overrightarrow{X}}$ [mm/yr]	\overline{s}_{xp} [mas]	σ̄ _{yp} [mas]	σ̄ _{UT1} [ms]
w/ AGGO	-2%	-2%	-1%	-3%	-3%
w/o South American stations	+2%	+3%	+1%	+6%	+6%

SLR stations in South America: Impact on combined TRF

Improvement of **Origin** and **Scale** by adding a single additional SLR station to the current network (black dots)

	Origin X	Origin Y	Origin Z	Scale
w/ AGGO	-4%	-3%	-3%	-3%
w/o South America	+15%	+13%	+11%	+12%

Thaller et al.: PLATO Overview | UN-GGRF in Latin America, 19.09.2019 | Page 11

VLBI stations in South America: Impact on combined TRF

Different network designs in South America:

Study the impact on mean coordinate precision, standard deviations of pole coordinates xp, yp and UT1-UTC w. r. t. the legacy network, and degree of freedom (DOF)

AGGO (La Plata) is very important for good estimation of Earth rotation parameters

	legacy	TIGO→AGGO		w/o AGGO				
DOF	182,911	189,507		181,273				
\overline{s}_{χ} [mm]	1.56	1.51	(-3%)	1.56	(-0%)			
<i>s_{xp}</i> [mas]	0.051	0.051	(-1%)	0.054	(+5%)			
<i>s_{yp}</i> [mas]	0.060	0.060	(-1%)	0.067	(+12%)			
<i>s_{UT1}</i> [ms]	0.004	0.003	(-1%)	0.004	(+10%)			

Thank you for your attention!

Contact:

Bundesamt für Kartographie und Geodäsie Section G1 Richard-Strauss-Allee 11 DE-60598 Frankfurt

Contact person: Dr. Daniela Thaller <u>daniela.thaller@bkg.bund.de</u> www.bkg.bund.de Tel. +49 (0) 69 6333-273

