

The Satellite Laser Ranging System of AGGO

Michael Häfner, BKG AGGO, La Plata, Argentina

GGRF Workshop Buenos Aires, 20.09.2019

Bundesamt für Kartographie und Geodäsie

Geodetic data is always available...

... but where does it come from?

Overview

AGGO-SLR System:

- System Setup
- Operation History
- Capacity Building and Knowledge Transfer

Laser and detection system

Laser pulse generation

Detection system

SPAD

- Passively mode coupled Ti:Sa Oscillator
- Primary wavelength 847 nm above first water vapour absorption bands Secondary wavelength 423.5 nm for two colour measurements
- 40 ps pulse width, 100 Hz repetition rate
- Single Photon detection; precision: few mm
- Robust and precise system suitable for \rightarrow environments with high humidity

System Setup: Laser and detection

Telescope

- Galilean Refractor: Sealed, easy to align
- 50 cm aperture, 10 m focal length
- Coudé-type optical path
- Monostatic system with Alt/Az mount
- Fast mount: 15°/s Azimuth, 10°/s Elevation
- Azimuth Platform: Air cushion on polished granite block
- Compact, robust, precise and fast telescope
 Field maintenance possible

System Setup: Telescope

Operation in Wettzell and Concepción

- 1998: Delivery to Wettzell First measurements as 7594
- 2000: Upgrade of Telescope Control Unit from Transputer to Real Time Linux PC
- 2002: Transfer to Concepción 7405
- 2006: Upgrade of Laser System: from 10 Hz to 100 Hz

Operation history: Early Years

2008: Replacement of Coudé Prisms in the Field

Operation history: System Maintenance

27.02.2010: MW 8.8 Earthquake

- 80 km distance to epicentre while SLR-system in operation
- > 3 m jump towards S-W
- No damage in telescope/laser
- Operation resumed after only 6 weeks

Operation history: Earthquake

AGGO

2011: First SLR measurements to Galileo 101 and 102

Protocol of first SLR measurements on 27.11.2011

Aktuelles – Satellitenbahn Verifikation mit TIGO SLR

accepted

returns

21462

Operation history: Galileo

2016-19: Lifetime extension by decades

- 2015: Move from Concepción to La Plata, 3500 km crossing the Andes and ٠ Argentina; System arrives without major damage; AGGO SLR: 7408
- Overhaul project: Extend lifetime 2 decades ۲
 - Overhaul Elevation Gearbox
 - Develop Remote Control Unit
 - Overhaul cart and cabling
 - Overhaul Telescope Control Unit (TCU)
- Install new TCU: End of 2019
- **Resume Operation: Early 2020**

2018-19: Elevation Gearbox Overhaul in the Field

- No sophisticated tools needed
- Telescope tube remains sealed
- Clear alignment procedure

Capacity Building and Knowledge Transfer: Elevation Gearbox Overhaul

Remote Control Unit (RCU) Development

- Implement cutting edge technology on industry standard basis; modular and extendible
- Software and Hardware Development
- Guarantee future maintenance knowledge

Capacity Building and Knowledge Transfer: RCU / Software Development

Optical analysis of the System with ZEMAX

Capacity Building and Knowledge Transfer: Optic Design

SLR in Latin America

2nd Latin American SLR Workshop, Mendoza, 12/2017

- Linking the Latin American SLR stations
- Improving the network performance: Short Arc, Local Ties, Sharing Operation Experience
- Building up Analysis capacities
- 3rd LA SLR-Workshop in 11/2019

Capacity Building and Knowledge Transfer: SLR Network

Conclusions

- Need a robust, well designed system capable for field maintenance with a "hay bale wire".
- Need experts, a good team and strong support from home base.
- Capacity Building and Knowledge transfer is essential for continuous operation.
- Need for interchange with other stations (ILRS workshops, SIRGAS, ...).
- Be prepared to adapt to the local conditions (earthquake, power outage, custom delays, ...).

iMuchas gracias!

michael.haefner@bkg.bund.de